Cheenta is joining hands with Aditya Birla Education Academy for AMC Training.
Learn More

October 27, 2019

AMC 10A Year 2007 Problem 20 Sequential Hints

[et_pb_section fb_built="1" _builder_version="4.0"][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Understand the problem

[/et_pb_text][et_pb_text _builder_version="3.27.4" text_font="Raleway||||||||" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]Suppose that the number \(a\) satisfies the equation \(a\)+\(\frac{1}{a}\)=\(4\) What is the value of \(a^4\)+\(\frac{1}{a^4}\)?  

(a) 164.        (b)172.       (c)192.       (d)194.       (e)212

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="4.0" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="4.0"]

American Mathematical Contest 2007 10 A Problem 20

[/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="4.0" open="off"]

Basic Algebra 

[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="4.0" open="off"]

4/10

[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="4.0" open="off"]

Challenges and Thrills in Pre College Mathematics Excursion Of Mathematics 

[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Start with hints

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="4.0" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff"][et_pb_tab title="Hint 0" _builder_version="4.0"]Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="4.0"]

Step 1. Look's hard , lets see we are given with \(a\)+\(\frac{1}{a}\)=\(4\) and we need to find \(a^4\)+\(\frac{1}{a^4}\). So first we will square both sides in order to get  \(a^2\)+\(\frac{1}{a^2}\) and find its value. Give it a try!!!!.

[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="4.0"]

Step 2. We reached the power 2 now aim is to get to power 4. Now After getting the the value of  \(a^2\)+\(\frac{1}{a^2}\) , again square both sides to get the value of the expression \(a^4\)+\(\frac{1}{a^4}\) . Very close to the solution !!!!!!.

[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="4.0"]

Step 3 . Now we get the equation \(a^4\)+\(\frac{1}{a^4}\) after solving  \((a^2+\frac{1}{a^2})^2\). Now I hope u can see the answer by your self just a last step!!!!.

[/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="4.0"]

Step 4 By solving we get the results that is   \(a^2\)+\(\frac{1}{a^2}\)=14

and \(a^4\)+\(\frac{1}{a^4}\) =194 which is our required value to find ,thats it!!!

[/et_pb_tab][/et_pb_tabs][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built="1" _builder_version="4.0"][/et_pb_section]

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com