INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

February 9, 2013

AMC 10 (2013) Solutions

12. In (\triangle ABC, AB=AC=28) and BC=20. Points D,E, and F are on sides (\overline{AB}, \overline{BC}), and (\overline{AC}), respectively, such that (\overline{DE}) and (\overline{EF}) are parallel to (\overline{AC}) and (\overline{AB}), respectively. What is the perimeter of parallelogram ADEF?

(\textbf{(A) }48\qquad\textbf{(B) }52\qquad\textbf{(C) }56\qquad\textbf{(D) }60\qquad\textbf{(E) }72\qquad )

Solution: Perimeter = 2(AD + AF). But AD = EF (since ABCD is a parallelogram).
Hence perimeter = 2(AF + EF).
Now ABC is isosceles (AB = AC = 28). Thus angle B = angle C. But EF is parallel to AB. Thus angle FEC = angle B which in turn is equal to angle C.
Hence triangle CEF is isosceles. Thus EF = CF.
Perimeter = 2(AF + EF) = 2(AF + EF) =2AC = (2 \times 28) = 56.

Ans. (C) 56

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.