Content
[hide]
Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1990 based on Algebraic Value.
Algebraic value – AIME I, 1990
Find the value of \((52+6\sqrt{43})^\frac{3}{2}-(52-6\sqrt{43})^\frac{3}{2}\).
- is 107
- is 828
- is 840
- cannot be determined from the given information
Key Concepts
Integers
Divisibility
Algebra
Check the Answer
But try the problem first…
Answer: is 828.
Source
Suggested Reading
AIME I, 1990, Question 2
Elementary Algebra by Hall and Knight
Try with Hints
First hint
here we consider \(S^{2}=[(52+6\sqrt{43})^\frac{3}{2}-(52-6\sqrt{43})^\frac{3}{2}]^{2}\)
Second Hint
or, \(S^{2}=(52+6\sqrt{43})^{3}+(52-6\sqrt{43})^{3}\)
\(-2[(52+6\sqrt{43})(52-6\sqrt{43})]^\frac{3}{2}\)
Final Step
or, \(S^{2}\)=685584
or, S=828.
Other useful links
- https://www.cheenta.com/rational-number-and-integer-prmo-2019-question-9/
- https://www.youtube.com/watch?v=lBPFR9xequA