INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

May 17, 2020

Algebraic Equation | AMC-10A, 2001 | Problem 10

Try this beautiful problem from Algebra based on Algebraic Equation.

Algebraic Equation - AMC-10A, 2001- Problem 10


If $x$, $y$, and $z$ are positive with $xy = 24$, $xz = 48$, and $yz = 72$, then $x + y + z$ is

  • \(5\)
  • \(20\)
  • \(22\)
  • \(25\)
  • \(36\)

Key Concepts


algebra

Equation

sum

Check the Answer


Answer: \(22\)

AMC-10A (2001) Problem 10

Pre College Mathematics

Try with Hints


The given equations are $xy=24$ and $xz=48$.we have to find out \(x+y+z\)

Now using two relations we can write \(\frac{xy}{xz}=\frac{24}{48}\)\(\Rightarrow 2y=z\)

Can you now finish the problem ..........

Now if we substitute the value $z = 2y$ into the equation $yz = 72$ then we will get \(2y^2=72\) \( \Rightarrow y=6\) and $2y=z=12$. We replace $y$ into the first equation to obtain $x=4$.

Therefore The sum of three numbers are \((x+y+z)\)=\(4+6+12\)=\(22\)

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com