Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Algebraic Equation | AMC-10A, 2001 | Problem 10

Try this beautiful problem from Algebra based on Algebraic Equation.

Algebraic Equation - AMC-10A, 2001- Problem 10


If $x$, $y$, and $z$ are positive with $xy = 24$, $xz = 48$, and $yz = 72$, then $x + y + z$ is

  • \(5\)
  • \(20\)
  • \(22\)
  • \(25\)
  • \(36\)

Key Concepts


algebra

Equation

sum

Check the Answer


Answer: \(22\)

AMC-10A (2001) Problem 10

Pre College Mathematics

Try with Hints


The given equations are $xy=24$ and $xz=48$.we have to find out \(x+y+z\)

Now using two relations we can write \(\frac{xy}{xz}=\frac{24}{48}\)\(\Rightarrow 2y=z\)

Can you now finish the problem ..........

Now if we substitute the value $z = 2y$ into the equation $yz = 72$ then we will get \(2y^2=72\) \( \Rightarrow y=6\) and $2y=z=12$. We replace $y$ into the first equation to obtain $x=4$.

Therefore The sum of three numbers are \((x+y+z)\)=\(4+6+12\)=\(22\)

Subscribe to Cheenta at Youtube


Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com