Get inspired by the success stories of our students in IIT JAM 2021. Learn More 

A Telescopic Sequence| ISI MStat 2018 PSB Problem 2

This is a beautiful problem from ISI MStat 2018 problem 2, which uses the cute little ideas of telescopic sum and partial fractions.

Problem

Let \(\{x_{n}\}_{n \geq 1}\) be a sequence defined by \(x_{1}=1\) and
$$
x_{n+1}=\left(x_{n}^{3}+\frac{1}{n(n+1)(n+2)}\right)^{1 / 3}, \quad n \geq 1
$$
Show that \(\{x_{n}\}_{n \geq 1}\) converges and find its limit.

Prerequisities

  • Limit of a Sequence
  • Partial Fraction \( \frac{1}{n(n+1)(n+2)} = \frac1{n(n+1)(n+2)}=\frac12\cdot\frac1n-\frac1{n+1}+\frac12\cdot\frac1{n+2} = -\frac12\left(\underbrace{\frac1{n+1} -\frac1n}\right)+\frac12\left(\underbrace{\frac1{n+2}-\frac1{n+1}}\right)\)
  • Telescopic Sum \( \sum_{i = 1}^{\infty} \left(\underbrace{\frac1{i+1} -\frac1i}\right) = \lim_{n \to \infty} \frac1n - 1 = -1 \)

Solution

\(x_{n+1} = (x_{n}^{3}+\frac{1}{n(n+1)(n+2)})^{1 / 3} \Rightarrow {x_{n+1}}^3 = x_{n}^{3}+\frac{1}{n(n+1)(n+2)}\)

\( \Rightarrow {x_{n+1}}^3 - x_{n}^{3} = \frac{1}{i(i+1)(i+2)}; x_1 = 1\).

\( \Rightarrow \sum_{i = 1}^{n-1} {x_{i+1}}^3 - x_{i}^{3} = \sum_{i = 1}^{n-1} \frac{1}{n(n+1)(n+2)} ; x_1 = 1\).

\( x_{n}^{3} - x_{1}^{3} = \sum_{i = 1}^{n-1} \frac{1}{i(i+1)(i+2)} = \sum_{i = 1}^{n-1} -\frac12\left(\underbrace{\frac1{i+1} -\frac1i}\right)+\frac12\left(\underbrace{\frac1{i+2}-\frac1{i+1}}\right)\)

\(\lim_{n \to \infty} (x_{n}^{3} - x_{1}^{3}) = \sum_{i = 1}^{\infty} \frac{1}{i(i+1)(i+2)} = \sum_{i = 1}^{\infty} -\frac12\left(\underbrace{\frac1{i+1} -\frac1i}\right)+\frac12\left(\underbrace{\frac1{i+2}-\frac1{i+1}}\right) = \frac14 \)

\( \lim_{n \to \infty} x_{n}^{3} = \frac54 \Rightarrow \lim_{n \to \infty} x_{n} = ({\frac54})^\frac13 \).

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com