Understand the problem

Find all pairs $(b,c)$ of positive integers, such that the sequence defined by $a_1=b$, $a_2=c$ and $a_{n+2}= \left| 3a_{n+1}-2a_n \right|$ for $n \geq 1$ has only finite number of composite terms.

Source of the problem
Bulgarian Mathematical Olympiad 2002
Topic
Number theory
Difficulty Level
Medium
Suggested Book
Problem Solving Strategies by Arthur Engel

Start with hints

Do you really need a hint? Try it first!

There exists a general theory of second-order linear difference equations. Read about it here.
Can we have a_n>a_{n+1} for all n? What happens if we do? What happens otherwise?

Note that if a_n<a_{n+1} for some n then the sequence becomes increasing thereafter. Use this fact to simplify the recurrence relation and solve it explicitly.

The sequence cannot be decreasing because it is a sequence of positive integers. Hence there exists (a smallest) k such that a_k\le a_{k+1}. If a_k=a_{k+1} then the sequence becomes constant from the kth term onwards (we shall treat this case later). Otherwise 3a_{k+1}-2a_k>a_k hence a_{k+2}>a_{k+1}. This implies that the sequence becomes increasing from the kth term onwards. Also, a_{n+2}=3a_{n+1}-2a_n for n\ge k. This difference equation has the characteristic equation \lambda^2-3\lambda +2=0 (see the link in hint 1) which has the solutions \lambda = 2,1. Thus, a_{n+k}=2^nA+B for A,B satisfying A+B=a_k, 2A+B=a_{k+1}. Take any prime divisor p of A+B. By Fermat’s little theorem, 2^{m(p-1)} \equiv 1 \; (\text{mod}\; p) for every positive integer m. Thus 2^{m(p-1)}A+B\equiv A+B\equiv 0\; (\text{mod}\; p). Hence the sequence contains infinitely many composites. This cannot be allowed, so the sequence cannot be strictly increasing at any point.  

The above discussion shows that, for any permissible sequence, there exists a (smallest) j and a prime q such that a_n=q for all n\ge j. For n<j, the sequence is decreasing. Note that, either q=a_{j+1}=3a_j-2a_{j-1}=3q-2a_{j-1} or q =2a_{j-1}-3q. Hence, either a_{j-1}=q or a_{j-1}=2q. The first one can happen only if j=1 because otherwise the minimality of j is violated. In that case, the sequence is constant and b=c=q. If a_{j-1}=2q then either j=2 (in which case b=2q, c=q) or q=|6q-2a_{j-2}| hence a_{j-2}=3q\pm\frac{q}{2}. The last equality forces q to be 2. Thus a_{j-2}=6\pm 1. If j>3 then 4=a_{j-1}=|18\pm 3 - 2a_{j-3}| which is absurd as 2a_{j-3} cannot be an odd number. Hence j=3 in this case and c=4,b=5,7.

Watch the video (Coming Soon)

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Arithmetic sequence | AMC 10A, 2015 | Problem 7

Try this beautiful problem from Algebra: Arithmetic sequence from AMC 10A, 2015, Problem. You may use sequential hints to solve the problem.

Sequence and greatest integer | AIME I, 2000 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2000 based on Sequence and the greatest integer.

Series and sum | AIME I, 1999 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1999 based on Series and sum.

Inscribed circle and perimeter | AIME I, 1999 | Question 12

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2011 based on Rectangles and sides.

Problem based on Cylinder | AMC 10A, 2015 | Question 9

Try this beautiful problem from Mensuration: Problem based on Cylinder from AMC 10A, 2015. You may use sequential hints to solve the problem.

LCM and Integers | AIME I, 1998 | Question 1

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 1998, Problem 1, based on LCM and Integers.

Cubic Equation | AMC-10A, 2010 | Problem 21

Try this beautiful problem from Algebra, based on the Cubic Equation problem from AMC-10A, 2010. You may use sequential hints to solve the problem.

Median of numbers | AMC-10A, 2020 | Problem 11

Try this beautiful problem from Geometry based on Median of numbers from AMC 10A, 2020. You may use sequential hints to solve the problem.

Pen & Note Books Problem| PRMO-2017 | Question 8

Try this beautiful Pen & Note Books Problem from Algebra from PRMO 2017, Question 8. You may use sequential hints to solve the problem.

Rectangle Problem | Geometry | PRMO-2017 | Question 13

Try this beautiful Rectangle Problem from Geometry from PRMO 2017, Question 13. You may use sequential hints to solve the problem.