Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

4 questions from Sylow’s theorem: Qn 4

Prove that if |G| = 8000 then G is not simple .

SOLUTION

If \( |G| = 2^3 \times 10^3 = 2^6 \times 5^3 \\ consider \ , \ n_5 = (5k+1) | 2^6 \\ n_5 = 1 , 16 \\ n_2 = (2k +1) | |G| \\ \Rightarrow n_2 = 5 \ , 25 ,\ 125 \) .

Let , H and K are two Sylow - 5- subgroups

\( |H \cap K | | |H| = 5^3 \\ \Rightarrow |H \cap K | = 1 \, 5 , \ 25 \)

If \( |H \cap K| = 1 \\ \Rightarrow |HK| = \frac {|H||K|}{|H \cap K |} = (125)^2 > |G| \)

\( \\ \Rightarrow \Leftarrow \\ \)

If \( H \cap K = 5 \ \\ \ If \ n_5 = 16 \ and \ n_5 = 16 \nequiv 1 \ (mod 11^2) \) .

So there are Sylow- p - subgroups H and K are \( H \cap K \) is of index p in both H and K . Hence normal in each .

So \( N_H(H \cap K) = H ; \ N_K(H \cap K ) = K \\ \Rightarrow | N_G(H \cap K )| > 125 [as \ H \cap K \subset N_G(H \cap K) ] \\ \Rightarrow 125| \ |N_G(H \cap K) \ and \ |N_G (H \cap K )| > 125 \) .

By the ................................... \( |N_G(H \cap K)| = 125 \times k \)

althogh this will not be required .

\(N_G(H \cap K ) = 125 \times 8 \rightarrow for \ this \ case \)

\( [ G: N_G(H \cap K ) = 8 \ but \ |G| \not| 8! \ \ \Rightarrow G \ is \ not \ simple \\ N_G(H \cap K) = 125 \times 2^4 \rightarrow for \ this \ case ] \\ [ G:N_G(H \cap K) = 4 \ but \ |G| \not| 4! \Rightarrow G \ is \ not \ simple \\ N_G(H \cap K) = 125 \times 2^5 \rightarrow for \ this \ case ] \\ [G:N_G(H \cap K) =2 \Rightarrow N_G(H \cap K) ... G \Rightarrow G \ is \ not \ simple \\ |N_G(H \cap K) |= 125 \times 2^6 \\ =|G| \rightarrow for \ this \ case \\ \\ \\ \\ \\ H \cap K ...G \\ \Rightarrow G \ is \ not \ simple \)

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com