How Cheenta works to ensure student success?
Explore the Back-Story

Volume of revolution : IIT JAM 2018 Question Number 19

[et_pb_section fb_built="1" _builder_version="4.2.2" width="99.8%" custom_margin="||||false|false" custom_padding="||||false|false"][et_pb_row _builder_version="4.2.2" width="100%" custom_margin="||||false|false" custom_padding="||||false|false"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="4.2.2" text_font="Aclonica|300|||||||" text_text_color="#ffffff" header_font="Aclonica|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

What are we learning ?

[/et_pb_text][et_pb_text _builder_version="4.1" text_font="Raleway||||||||" text_font_size="20px" text_letter_spacing="1px" text_line_height="1.5em" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]

Competency in Focus: Application of Calculus (Volume of Revolution)

This is problem from IIT JAM 2018 is based on calculation of volume of revolution.

[/et_pb_text][et_pb_text _builder_version="4.2.2" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

First look at the knowledge graph.

[/et_pb_text][et_pb_image src="https://www.cheenta.com/wp-content/uploads/2020/02/ISI_19-1.png" align="center" force_fullwidth="on" _builder_version="4.2.2" min_height="388px" height="198px" max_height="207px"][/et_pb_image][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Next understand the problem

[/et_pb_text][et_pb_text _builder_version="4.2.2" text_font="Raleway||||||||" text_font_size="20px" text_letter_spacing="1px" text_line_height="1.5em" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]Consider the region D on yz plane and bounded by the line y=\frac{1}{2} and the curve y^{2}+z^{2}=1 where y\geq0. If the region D is revolved about the z-axis then the volume of resulting solid is (A)\frac{\pi}{\sqrt{3}}\qquad(B)\frac{2\pi}{\sqrt{3}} \qquad(C)\frac{\pi\sqrt{3}}{2}\qquad(D)\pi\sqrt{3} [/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="4.2.2" width="100%" max_width="1024px" max_width_tablet="" max_width_phone="" max_width_last_edited="on|phone"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="4.2.2" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="4.2.2"]IIT JAM 2018, Question number 19[/et_pb_accordion_item][et_pb_accordion_item title="Key Competency" _builder_version="4.2.2" open="off"]Calculation of volume of surface revolution[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="4.2.2" open="off"]7/10[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="4.2.2" open="off"]Integral Calculus by Gorakh Prasad[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="4.0.9" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|0px|20px||" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Start with hints 

[/et_pb_text][et_pb_tabs _builder_version="4.2.2"][et_pb_tab title="HINT 0" _builder_version="4.0.9"]Do you really need a hint? Try it first![/et_pb_tab][et_pb_tab title="HINT 1" _builder_version="4.2.2"]Imagine that we have a portion of a curve. y=f(x) from x=a to x=b. In the xy-plane we revolve it around a straingh line -  x-axis.  The result is called solid of revolution Here in our next hint we will find techniques to calculate the volumes of solid of revolution.[/et_pb_tab][et_pb_tab title="HINT 2" _builder_version="4.2.2"]Let's construct a narrow rectangle of base width \mathrm d x and height f(x) sitting under the curve. Whent this rectangle is revolved around the x-\text{axis}. We get a disk whose radius is f(x) and height is \mathrm d x. The volume of this disk \mathrm d V=\pi[f(x)]^{2}\mathrm d x. So the total volume of the solid is  V=\int_a^b \mathrm d V=\int_a^b \pi[f(x)]^{2}\mathrm d x. If the curve revolved around the vertical line (such as y-axis), then horizontal disks are used. If the curve can be solved for x in terms of y. x=g(y) then the formula would be. V=\int_a^b[g(y)]^2\mathrm d y. Now can you guess if the region between two curves is revolved around the axis.[/et_pb_tab][et_pb_tab title="HINT 3" _builder_version="4.2.2"]Sometimes the region between two curves is revolved around the axis and a gap is created between the solid and the axis. A rectangle within the rotated region will become a disk with a hole in it, also known as washer. If the rectangle is vertical and extends from the curve y=g(x) up to the curve y=f(x), then when it is rotated around x- axis, it will result in a washer with volume equal to \mathrm d V=\pi\{[f(x)]^{2}-[g(x)]^{2}\}\mathrm d x. Which gives us  V=\int_a^b \pi \{[f(x)]^{2}-[g(x)]^{2}\}\mathrm d x.[/et_pb_tab][et_pb_tab title="HINT 4" _builder_version="4.2.2"]Now in the given problem replace x by z , in the obove discussion y=f(z)=\sqrt{1-z^{2}}, y=g(z)=\frac{1}{2} and the line y=\frac{1}{2} intersects the curve at (\frac{-\sqrt{3}}{2},\frac{1}{2})(\frac{\sqrt{3}}{2},\frac{1}{2}) in terms of (z,x) co-ordinate. and hence the volume is  V=\pi \int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}}[(1-z^{2})-\frac{1}{4})]\mathrm d z. =\pi[\frac{3z}{4}-\frac{z^{3}}{3}]_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} =\pi(\frac{3\sqrt{3}}{8}-\frac{3\sqrt{3}}{24})\times 2 =\pi \frac{3\sqrt{3} \times 2 \times 2}{24} =\frac{\pi \sqrt{3}}{2}[/et_pb_tab][et_pb_tab title="Explanation by images" _builder_version="4.2.2"] [/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Connected Program at Cheenta

[/et_pb_text][et_pb_blurb title="Amc 8 Master class" url="https://www.cheenta.com/matholympiad/" url_new_window="on" image="https://www.cheenta.com/wp-content/uploads/2018/03/matholympiad.png" _builder_version="4.0.9" header_font="||||||||" header_text_color="#0c71c3" header_font_size="48px" body_font_size="20px" body_letter_spacing="1px" body_line_height="1.5em" link_option_url="https://www.cheenta.com/matholympiad/" link_option_url_new_window="on"]

Cheenta AMC Training Camp consists of live group and one on one classes, 24/7 doubt clearing and continuous problem solving streams.[/et_pb_blurb][et_pb_button button_url="https://www.cheenta.com/amc-8-american-mathematics-competition/" url_new_window="on" button_text="Learn More" button_alignment="center" _builder_version="4.0.9" custom_button="on" button_bg_color="#0c71c3" button_border_color="#0c71c3" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" background_layout="dark" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3"][/et_pb_button][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Similar Problems

[/et_pb_text][et_pb_post_nav in_same_term="off" _builder_version="4.0.9"][/et_pb_post_nav][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]
[et_pb_section fb_built="1" _builder_version="4.2.2" width="99.8%" custom_margin="||||false|false" custom_padding="||||false|false"][et_pb_row _builder_version="4.2.2" width="100%" custom_margin="||||false|false" custom_padding="||||false|false"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="4.2.2" text_font="Aclonica|300|||||||" text_text_color="#ffffff" header_font="Aclonica|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

What are we learning ?

[/et_pb_text][et_pb_text _builder_version="4.1" text_font="Raleway||||||||" text_font_size="20px" text_letter_spacing="1px" text_line_height="1.5em" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]

Competency in Focus: Application of Calculus (Volume of Revolution)

This is problem from IIT JAM 2018 is based on calculation of volume of revolution.

[/et_pb_text][et_pb_text _builder_version="4.2.2" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

First look at the knowledge graph.

[/et_pb_text][et_pb_image src="https://www.cheenta.com/wp-content/uploads/2020/02/ISI_19-1.png" align="center" force_fullwidth="on" _builder_version="4.2.2" min_height="388px" height="198px" max_height="207px"][/et_pb_image][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Next understand the problem

[/et_pb_text][et_pb_text _builder_version="4.2.2" text_font="Raleway||||||||" text_font_size="20px" text_letter_spacing="1px" text_line_height="1.5em" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]Consider the region D on yz plane and bounded by the line y=\frac{1}{2} and the curve y^{2}+z^{2}=1 where y\geq0. If the region D is revolved about the z-axis then the volume of resulting solid is (A)\frac{\pi}{\sqrt{3}}\qquad(B)\frac{2\pi}{\sqrt{3}} \qquad(C)\frac{\pi\sqrt{3}}{2}\qquad(D)\pi\sqrt{3} [/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="4.2.2" width="100%" max_width="1024px" max_width_tablet="" max_width_phone="" max_width_last_edited="on|phone"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="4.2.2" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="4.2.2"]IIT JAM 2018, Question number 19[/et_pb_accordion_item][et_pb_accordion_item title="Key Competency" _builder_version="4.2.2" open="off"]Calculation of volume of surface revolution[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="4.2.2" open="off"]7/10[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="4.2.2" open="off"]Integral Calculus by Gorakh Prasad[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="4.0.9" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|0px|20px||" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Start with hints 

[/et_pb_text][et_pb_tabs _builder_version="4.2.2"][et_pb_tab title="HINT 0" _builder_version="4.0.9"]Do you really need a hint? Try it first![/et_pb_tab][et_pb_tab title="HINT 1" _builder_version="4.2.2"]Imagine that we have a portion of a curve. y=f(x) from x=a to x=b. In the xy-plane we revolve it around a straingh line -  x-axis.  The result is called solid of revolution Here in our next hint we will find techniques to calculate the volumes of solid of revolution.[/et_pb_tab][et_pb_tab title="HINT 2" _builder_version="4.2.2"]Let's construct a narrow rectangle of base width \mathrm d x and height f(x) sitting under the curve. Whent this rectangle is revolved around the x-\text{axis}. We get a disk whose radius is f(x) and height is \mathrm d x. The volume of this disk \mathrm d V=\pi[f(x)]^{2}\mathrm d x. So the total volume of the solid is  V=\int_a^b \mathrm d V=\int_a^b \pi[f(x)]^{2}\mathrm d x. If the curve revolved around the vertical line (such as y-axis), then horizontal disks are used. If the curve can be solved for x in terms of y. x=g(y) then the formula would be. V=\int_a^b[g(y)]^2\mathrm d y. Now can you guess if the region between two curves is revolved around the axis.[/et_pb_tab][et_pb_tab title="HINT 3" _builder_version="4.2.2"]Sometimes the region between two curves is revolved around the axis and a gap is created between the solid and the axis. A rectangle within the rotated region will become a disk with a hole in it, also known as washer. If the rectangle is vertical and extends from the curve y=g(x) up to the curve y=f(x), then when it is rotated around x- axis, it will result in a washer with volume equal to \mathrm d V=\pi\{[f(x)]^{2}-[g(x)]^{2}\}\mathrm d x. Which gives us  V=\int_a^b \pi \{[f(x)]^{2}-[g(x)]^{2}\}\mathrm d x.[/et_pb_tab][et_pb_tab title="HINT 4" _builder_version="4.2.2"]Now in the given problem replace x by z , in the obove discussion y=f(z)=\sqrt{1-z^{2}}, y=g(z)=\frac{1}{2} and the line y=\frac{1}{2} intersects the curve at (\frac{-\sqrt{3}}{2},\frac{1}{2})(\frac{\sqrt{3}}{2},\frac{1}{2}) in terms of (z,x) co-ordinate. and hence the volume is  V=\pi \int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}}[(1-z^{2})-\frac{1}{4})]\mathrm d z. =\pi[\frac{3z}{4}-\frac{z^{3}}{3}]_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} =\pi(\frac{3\sqrt{3}}{8}-\frac{3\sqrt{3}}{24})\times 2 =\pi \frac{3\sqrt{3} \times 2 \times 2}{24} =\frac{\pi \sqrt{3}}{2}[/et_pb_tab][et_pb_tab title="Explanation by images" _builder_version="4.2.2"] [/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Connected Program at Cheenta

[/et_pb_text][et_pb_blurb title="Amc 8 Master class" url="https://www.cheenta.com/matholympiad/" url_new_window="on" image="https://www.cheenta.com/wp-content/uploads/2018/03/matholympiad.png" _builder_version="4.0.9" header_font="||||||||" header_text_color="#0c71c3" header_font_size="48px" body_font_size="20px" body_letter_spacing="1px" body_line_height="1.5em" link_option_url="https://www.cheenta.com/matholympiad/" link_option_url_new_window="on"]

Cheenta AMC Training Camp consists of live group and one on one classes, 24/7 doubt clearing and continuous problem solving streams.[/et_pb_blurb][et_pb_button button_url="https://www.cheenta.com/amc-8-american-mathematics-competition/" url_new_window="on" button_text="Learn More" button_alignment="center" _builder_version="4.0.9" custom_button="on" button_bg_color="#0c71c3" button_border_color="#0c71c3" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" background_layout="dark" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3"][/et_pb_button][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Similar Problems

[/et_pb_text][et_pb_post_nav in_same_term="off" _builder_version="4.0.9"][/et_pb_post_nav][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
Menu
Trial
Whatsapp
magic-wandrockethighlight