Get inspired by the success stories of our students in IIT JAM MS, ISI  MStat, CMI MSc Data Science.  Learn More 

ISI MStat PSB 2015 Problem 2 | Vector Space & its Dimension

This is a beautiful problem from ISI MStat PSB 2015 Problem 2. We provide detailed solution with prerequisite mentioned explicitly.

Problem- ISI MStat PSB 2015 Problem 2

For any \(n \times n\) matrix \( A=\left(\left(a_{i j}\right)\right),\) consider the following three proper-
ties:

  1. \(a_{i j}\) is real valued for all \(i, j\) and \(A\) is upper triangular.
  2. \(\sum_{j=1}^{n} a_{i j}=0,\) for all \(1 \leq i \leq n\)
  3. \( \sum_{i=1}^{n} a_{i j}=0,\) for all \(1 \leq j \leq n\)
    Define the following set of matrices:
    \( c_n \) = {A: A is \( n \times n \) and satisfies (1),(2) and (3) above }

(a) Show that \( c_n \) is a vector space for any \(n \geq 1\) .

(b) Find the dimension of , \( c_n \) when n = 2 and n = 3.

Prerequisites

  • Upper triangular matrix
  • Subspace of a vector space
  • Dimension of a vector space

Solution

(a) To show that \( c_n \) is a vector space for any \(n \geq 1\)

So, here if we can show that \( c_n \) is a subspace of the vector space of \( n\times n \) real matrices with usual matrix addition and scalar multiplication then we are done!

Let's try to show this ,

Putting \(a_{i j} =0\) for all i,j then \( A= \left(\left(a_{i j}\right)\right),\) satisfies all the properties (1),(2) & (3) .

So, \( \begin{pmatrix} 0 & 0 &... & 0 \\ 0 & 0 &... & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 &... & 0 \end{pmatrix} \) \( \epsilon \) \( c_n \)

Shall show that (i) for all \( A , B \) \( \epsilon \) \( c_n \) , \( A + B \epsilon c_n \) and

(ii) for all \( A \) \( \epsilon \) \( c_n \) for all \( p_1 \epsilon\) {\( \mathbb{R}\) }-{0} , \( p_1 A \epsilon c_n \)

For (i) Take any \( A=((a_{i j})) , B=(( b_{i j})) \) \( \epsilon \) \( c_n \)

Let , D=\(A + B \) and if \( D=(( d_{i j}))\) then \( d_{ij}= a_{i j} + b_{i j} \)

Now we will see whether D satisfies all the three properties (1),(2) and (3)

\( d_{ij} =0\) when \(a_{i j}=0\) and \(b_{i j} =0 \)

Hence as A and B are upper triangular matrix , D is also an upper triangular matrix .

So it satisfies property (1)

Again , \(\sum_{j=1}^{n} a_{i j}=0,\) for all \(1 \leq i \leq n\) and \(\sum_{j=1}^{n} b_{i j}=0,\) for all \(1 \leq i \leq n\) ,

then \(\sum_{j=1}^{n} d_{i j}=0,\) for all \(1 \leq i \leq n\) as \( d_{ij}=a_{i j} + b_{i j} \)

Hence it satisfies property (2) .

Now we have \( \sum_{i=1}^{n} a_{i j}=0,\) for all \(1 \leq j \leq n\) and \( \sum_{i=1}^{n} b_{i j}=0,\) for all \(1 \leq j \leq n\) ,then \( \sum_{i=1}^{n} d_{i j}=0,\) for all \(1 \leq j \leq n\) as \( d_{ij}=a_{i j} + b_{i j} \)

Hence it satisfies the properties (3)

For (ii) Take any \( A=((a_{i j})) \) \( \epsilon \) \( c_n \)

take any \( p_1 \epsilon\) {\( \mathbb{R}\) }-{0}

Let, \( K=p_1 A\) and if \(K=(( k_{i j}))\) then \( d_{ij}= p_1 a_{i j} \)

Then , \( k_{ij} =0\) when \(a_{i j}=0\)

Hence as A is an upper triangular matrix , K is also an upper triangular matrix .

So it satisfies property (1)

Again , \(\sum_{j=1}^{n} a_{i j}=0,\) for all \(1 \leq i \leq n\) then \(\sum_{j=1}^{n} k_{i j}=0,\) for all \(1 \leq i \leq n\) as \( k_{ij}=p_1 a_{i j} \)

Hence it satisfies property (2) .

Now we have \( \sum_{i=1}^{n} a_{i j}=0,\) for all \(1 \leq j \leq n\) ,then \( \sum_{i=1}^{n} k_{i j}=0,\) for all \(1 \leq j \leq n\) as \( k_{ij}=p_1 a_{i j} \)

Hence it satisfies the properties (3)

So, \( c_n \) is closed under vector addition and scalar multiplication.

Therefore , \( c_n \) is a subspace of the vector space of \( n \times n \) real matrices with usual matrix addition and scalar multiplication . Hence we are done !

(b) n=2 ,

\( A=((a_{i j})) \) \( \epsilon \) \( c_2\) then , \( A= \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix} \)by property (1) , \( a_{11}+a_{12}=0 , a_{22}=0 \)---(I) by property (2) and \( a_{11}=0 , a_{12}+a_{22}=0 \)---(II) by property (3) .

Now solving (I) and (II) we get \( A= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \)

Giving , \( c_2\) = { \(\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \) } hence \(dim(c_2)=0 \)

n=3

\( A=((a_{i j})) \) \( \epsilon \) \( c_3\) then , \( A= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}& a_{23} \\ 0 & 0& a_{33} \end{pmatrix} \) by property (1) , \( a_{11}+a_{12}+ a_{13}=0 , a_{22}+a_{23}=0 , a_{33}=0 \)---(I) by property (2) and \( a_{11}=0 , a_{12}+a_{22}=0 a_{13}+a_{23}+a_{33}=0 \)---(II) by property (3) .

Now solving (I) and (II) we get \(a_{11}=0 , a_{33}=0 \) \( a_{13}=-a_{12}=a_{22}=-a_{23}=-a_{13}=t\) (say) then ,

\( A= t \begin{pmatrix} 0 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0& 0\end{pmatrix} \) , \(t \epsilon R\)

Giving , \( c_3 \)= {t \(\begin{pmatrix} 0 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0& 0\end{pmatrix} \)} ,\(t \epsilon R\) .

Hence , \(dim ( c_3 )=1\)

Previous MStat Posts:

This is a beautiful problem from ISI MStat PSB 2015 Problem 2. We provide detailed solution with prerequisite mentioned explicitly.

Problem- ISI MStat PSB 2015 Problem 2

For any \(n \times n\) matrix \( A=\left(\left(a_{i j}\right)\right),\) consider the following three proper-
ties:

  1. \(a_{i j}\) is real valued for all \(i, j\) and \(A\) is upper triangular.
  2. \(\sum_{j=1}^{n} a_{i j}=0,\) for all \(1 \leq i \leq n\)
  3. \( \sum_{i=1}^{n} a_{i j}=0,\) for all \(1 \leq j \leq n\)
    Define the following set of matrices:
    \( c_n \) = {A: A is \( n \times n \) and satisfies (1),(2) and (3) above }

(a) Show that \( c_n \) is a vector space for any \(n \geq 1\) .

(b) Find the dimension of , \( c_n \) when n = 2 and n = 3.

Prerequisites

  • Upper triangular matrix
  • Subspace of a vector space
  • Dimension of a vector space

Solution

(a) To show that \( c_n \) is a vector space for any \(n \geq 1\)

So, here if we can show that \( c_n \) is a subspace of the vector space of \( n\times n \) real matrices with usual matrix addition and scalar multiplication then we are done!

Let's try to show this ,

Putting \(a_{i j} =0\) for all i,j then \( A= \left(\left(a_{i j}\right)\right),\) satisfies all the properties (1),(2) & (3) .

So, \( \begin{pmatrix} 0 & 0 &... & 0 \\ 0 & 0 &... & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 &... & 0 \end{pmatrix} \) \( \epsilon \) \( c_n \)

Shall show that (i) for all \( A , B \) \( \epsilon \) \( c_n \) , \( A + B \epsilon c_n \) and

(ii) for all \( A \) \( \epsilon \) \( c_n \) for all \( p_1 \epsilon\) {\( \mathbb{R}\) }-{0} , \( p_1 A \epsilon c_n \)

For (i) Take any \( A=((a_{i j})) , B=(( b_{i j})) \) \( \epsilon \) \( c_n \)

Let , D=\(A + B \) and if \( D=(( d_{i j}))\) then \( d_{ij}= a_{i j} + b_{i j} \)

Now we will see whether D satisfies all the three properties (1),(2) and (3)

\( d_{ij} =0\) when \(a_{i j}=0\) and \(b_{i j} =0 \)

Hence as A and B are upper triangular matrix , D is also an upper triangular matrix .

So it satisfies property (1)

Again , \(\sum_{j=1}^{n} a_{i j}=0,\) for all \(1 \leq i \leq n\) and \(\sum_{j=1}^{n} b_{i j}=0,\) for all \(1 \leq i \leq n\) ,

then \(\sum_{j=1}^{n} d_{i j}=0,\) for all \(1 \leq i \leq n\) as \( d_{ij}=a_{i j} + b_{i j} \)

Hence it satisfies property (2) .

Now we have \( \sum_{i=1}^{n} a_{i j}=0,\) for all \(1 \leq j \leq n\) and \( \sum_{i=1}^{n} b_{i j}=0,\) for all \(1 \leq j \leq n\) ,then \( \sum_{i=1}^{n} d_{i j}=0,\) for all \(1 \leq j \leq n\) as \( d_{ij}=a_{i j} + b_{i j} \)

Hence it satisfies the properties (3)

For (ii) Take any \( A=((a_{i j})) \) \( \epsilon \) \( c_n \)

take any \( p_1 \epsilon\) {\( \mathbb{R}\) }-{0}

Let, \( K=p_1 A\) and if \(K=(( k_{i j}))\) then \( d_{ij}= p_1 a_{i j} \)

Then , \( k_{ij} =0\) when \(a_{i j}=0\)

Hence as A is an upper triangular matrix , K is also an upper triangular matrix .

So it satisfies property (1)

Again , \(\sum_{j=1}^{n} a_{i j}=0,\) for all \(1 \leq i \leq n\) then \(\sum_{j=1}^{n} k_{i j}=0,\) for all \(1 \leq i \leq n\) as \( k_{ij}=p_1 a_{i j} \)

Hence it satisfies property (2) .

Now we have \( \sum_{i=1}^{n} a_{i j}=0,\) for all \(1 \leq j \leq n\) ,then \( \sum_{i=1}^{n} k_{i j}=0,\) for all \(1 \leq j \leq n\) as \( k_{ij}=p_1 a_{i j} \)

Hence it satisfies the properties (3)

So, \( c_n \) is closed under vector addition and scalar multiplication.

Therefore , \( c_n \) is a subspace of the vector space of \( n \times n \) real matrices with usual matrix addition and scalar multiplication . Hence we are done !

(b) n=2 ,

\( A=((a_{i j})) \) \( \epsilon \) \( c_2\) then , \( A= \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix} \)by property (1) , \( a_{11}+a_{12}=0 , a_{22}=0 \)---(I) by property (2) and \( a_{11}=0 , a_{12}+a_{22}=0 \)---(II) by property (3) .

Now solving (I) and (II) we get \( A= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \)

Giving , \( c_2\) = { \(\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \) } hence \(dim(c_2)=0 \)

n=3

\( A=((a_{i j})) \) \( \epsilon \) \( c_3\) then , \( A= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22}& a_{23} \\ 0 & 0& a_{33} \end{pmatrix} \) by property (1) , \( a_{11}+a_{12}+ a_{13}=0 , a_{22}+a_{23}=0 , a_{33}=0 \)---(I) by property (2) and \( a_{11}=0 , a_{12}+a_{22}=0 a_{13}+a_{23}+a_{33}=0 \)---(II) by property (3) .

Now solving (I) and (II) we get \(a_{11}=0 , a_{33}=0 \) \( a_{13}=-a_{12}=a_{22}=-a_{23}=-a_{13}=t\) (say) then ,

\( A= t \begin{pmatrix} 0 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0& 0\end{pmatrix} \) , \(t \epsilon R\)

Giving , \( c_3 \)= {t \(\begin{pmatrix} 0 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0& 0\end{pmatrix} \)} ,\(t \epsilon R\) .

Hence , \(dim ( c_3 )=1\)

Previous MStat Posts:

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
Menu
Trial
Whatsapp
rockethighlight