How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

AMC 8, 2019 Problem 17 | Smallest Positive Integer

Try out this beautiful algebra problem from AMC 8, 2019 based on the smallest positive integer.

AMC 8, 2019: Problem 17

What is the value of the product

$$\left(\frac{1 \cdot 3}{2 \cdot 2}\right)\left(\frac{2 \cdot 4}{3 \cdot 3}\right)\left(\frac{3 \cdot 5}{4 \cdot 4}\right) \cdots\left(\frac{97 \cdot 99}{98 \cdot 98}\right)\left(\frac{98 \cdot 100}{99 \cdot 99}\right) ?$$

(A) $\frac{1}{2}$

(B) $\frac{50}{99}$

(C) $\frac{9800}{9801}$

(D) $\frac{100}{99}$

(E) $50$

Key Concepts




Check the Answer

Answer: is $\frac{50}{99}$

AMC 8, 2019, Problem 17

Try with Hints

First hint

We write $\left(\frac{1.3}{2.2}\right)\left(\frac{2.4}{3.3}\right)\left(\frac{3.5}{4.4}\right) \ldots \ldots . .\left(\frac{97.99}{98.98}\right)\left(\frac{98.100}{99.99}\right)$ in a different form like
$\frac{1}{2} \cdot\left(\frac{3.2}{2.3}\right) \cdot\left(\frac{4.3}{3.4}\right) \cdots \cdots \cdots \cdots\left(\frac{99.98}{98.99}\right) \cdot \frac{100}{99}$

Second Hint

All of the middle terms eliminate each other, and only the first and last term remains i.e.

$\frac{1}{2} \cdot \frac{100}{99}$

Final Step

$\frac{1}{2} \cdot \frac{100}{99}=\frac{50}{99}$

and that is the final answer.

Subscribe to Cheenta at Youtube

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.