INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

October 2, 2020

Trigonometry | PRMO-2018 | Problem No-14

If $x=\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \ldots . \cos 89^{\circ}$ and $y=\cos 2^{\circ} \cos 6^{\circ} \cos 10^{\circ} \ldots \ldots \cos 86^{\circ},$ then what is the integer nearest to $\frac{2}{7} \log _{2}(\mathrm{y} / \mathrm{x}) ?$

,

  • \(28\)
  • \(19\)
  • \(24\)
  • \(16\)
  • \(27\)

Key Concepts


Trigonometry

Logarithm

Suggested Book | Source | Answer


Suggested Reading

Pre College Mathematics

Source of the problem

Prmo-2018, Problem-14

Check the answer here, but try the problem first

\(19\)

Try with Hints


First Hint

Given that $x=\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \cdots \cos 89^{\circ}$

\(\Rightarrow x=\cos 1^{\circ}\cos 89^{\circ}\cos 2^{\circ}\cos 88^{\circ}........\cos 45^{\circ}\)

\(\Rightarrow x=\cos 1^{\circ}\sin 1^{\circ}\cos 2^{\circ}\cos 2^{\circ}........\cos 45^{\circ}\) ( as cos(90-x)=sin x)

\(\Rightarrow x=\frac{1}{2^{44}} (2 \cos 1^{\circ} \sin 1^{\circ}) (2\cos 2^{\circ}\sin 2^{\circ})........\cos 45^{\circ}\)

$\Rightarrow x =\frac{ \cos 45^{\circ} \cdot \sin 2^{\circ} \cdot \sin 4^{\circ} \cdots \sin 88}{ 2^{44}}$ (as sin 2x= 2 sin x cos x)

Now can you finish the problem?

Second Hint

Therefore we can say that
$x=\frac{1}{2^{1 / 2}} \times \frac{\sin 4^{\circ} \cdot \sin 8^{\circ} \cdots \sin 88^{\circ}}{2^{44} \times 2^{22}}$
$=\frac{\sin \left(90-86^{\circ}\right) \cdot \sin \left(90-84^{\circ}\right) \cdots \sin (90-2)}{2^{66} \cdot 2^{1 / 2}}$
$=\frac{\cos 2^{\circ} \cdot \cos 6^{\circ} \cdot \cos 86^{\circ}}{2^{133 / 2}}$
$x=\frac{y}{2^{133 / 2}}$

Can you finish the problem...?

Third Hint


$\frac{y}{x}=2^{133 / 2}$
$ \frac{2}{7} \log \left(\frac{y}{x}\right)=\frac{2}{7} \times \log _{2}(2)^{133 / 2}$
$=\frac{2}{7} \times \frac{133}{2}$
$=19$

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
enter