INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

April 28, 2020

Trigonometry and positive integers | AIME I, 1995 | Question 7

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1995 based on Trigonometry and positive integers.

Trigonometry and positive integers - AIME I, 1995

Given that (1+sint)(1+cost)=\(\frac{5}{4}\) and (1-sint)(1-cost)=\(\frac{m}{n}-k^\frac{1}{2}\) where k,m,n are positive integers with m and n relatively prime, find k+m+n.

  • is 107
  • is 27
  • is 840
  • cannot be determined from the given information

Key Concepts




Check the Answer

Answer: is 27.

AIME I, 1995, Question 7

Plane Trigonometry by Loney

Try with Hints

First hint

Let (1-sint)(1-cost)=x

\(\Rightarrow \frac{5x}{4}=(1-sin^{2}t)(1-cos^{2}t)=sin^{2}tcos^{2}t\)


from given equation sint+cost=\(\frac{5}{4}-(sin^{2}t+cos^{2}t)-sintcost\)=\(\frac{1}{4}-\frac{(5x)^\frac{1}{2}}{2}\)

Second Hint

again (1+sint)(1+cost)-2sintcost=x

\(\Rightarrow x=\frac{5}{4}-2(\frac{1}{4}-\frac{(5x)^\frac{1}{2}}{2})=\frac{3}{4}+(5x)^\frac{1}{2}\)

\(\Rightarrow (x-\frac{3}{4})^{2}=5x\)

\(\Rightarrow x=\frac{13}{4}-(10)^\frac{1}{2}\) for \(x \geq 0\)

Final Step

\(\Rightarrow 13+4+10=27\).

Subscribe to Cheenta at Youtube

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.