Understand the problem

For each natural number k, choose a complex number \(z_k\) , with\(  | z_k | = 1 \), and denote \( a_k \) by the area of the triangle formed by \(z_k , i \cdot z_k , z_k + i \cdot z_k \) . Then which of the following is true for the series below:  $$ \Sigma (a_k)^k $$

(1) It converges only if every \(z_k\) lies in the same quadrant
(2) It always diverges
(3) It always converges
(4) None of the above

Source of the problem

 

Topic

Complex Numbers and Geometry

Difficulty Level

6 out of 10

Suggested Book

Complex Numbers from A to Z by Titu Andreescu

Start with hints

Do you really need a hint? Try it first!

Connected Program at Cheenta

I.S.I. & C.M.I. Entrance Program

Indian Statistical Institute and Chennai Mathematical Institute offer challenging bachelor’s program for gifted students. These courses are B.Stat and B.Math program in I.S.I., B.Sc. Math in C.M.I.

The entrances to these programs are far more challenging than usual engineering entrances. Cheenta offers an intense, problem-driven program for these two entrances.

Similar Problem

Balls-go-round |ISI MStat PSB 2013 Problem 10

This is a very beautiful sample problem from ISI MStat PSB 2013 Problem 10. It’s based mainly on counting and following the norms stated in the problem itself. Be careful while thinking !

ISI MStat PSB 2005 Problem 5 | Uniformity of Uniform

This is a simple and elegant sample problem from ISI MStat PSB 2005 Problem 5. It’s based the mixture of Discrete and Continuous Uniform Distribution, the simplicity in the problem actually fools us, and we miss subtle happenings. Be careful while thinking !

ISI MStat PSB 2012 Problem 2 | Dealing with Polynomials using Calculus

This is a very beautiful sample problem from ISI MStat PSB 2012 Problem 2 based on calculus . Let’s give it a try !!

ISI MSTAT PSB 2011 Problem 4 | Digging deep into Multivariate Normal

This is an interesting problem which tests the student’s knowledge on how he visualizes the normal distribution in higher dimensions.

ISI MStat PSB 2012 Problem 5 | Application of Central Limit Theorem

This is a very beautiful sample problem from ISI MStat PSB 2012 Problem 5 based on the Application of Central Limit Theorem.

ISI MStat PSB 2007 Problem 7 | Conditional Expectation

This is a very beautiful sample problem from ISI MStat PSB 2007 Problem 7. It’s a very simple problem, which very much rely on conditioning and if you don’t take it seriously, you will make thing complicated. Fun to think, go for it !!

ISI MStat Entrance Exam books based on Syllabus

Are you preparing for ISI MStat Entrance Exams? Here is the list of useful books for ISI MStat Entrance Exam based on the syllabus.

ISI MStat PSB 2008 Problem 8 | Bivariate Normal Distribution

This is a very beautiful sample problem from ISI MStat PSB 2008 Problem 8. It’s a very simple problem, based on bivariate normal distribution, which again teaches us that observing the right thing makes a seemingly laborious problem beautiful . Fun to think, go for it !!

ISI MStat PSB 2004 Problem 6 | Minimum Variance Unbiased Estimators

This is a very beautiful sample problem from ISI MStat PSB 2004 Problem 6. It’s a very simple problem, and its simplicity is its beauty . Fun to think, go for it !!

ISI MStat PSB 2004 Problem 1 | Games and Probability

This is a very beautiful sample problem from ISI MStat PSB 2004 Problem 1. Games are best ways to understand the the role of chances in life, solving these kind of problems always indulges me to think and think more on the uncertainties associated with the system. Think it over !!