• LOGIN
  • No products in the cart.

Profile Photo

Trigonometric Inequality (Tomato subjective 79)

Problem: Let \({{\theta}_1}\), \({{\theta}_2}\), … , \({{\theta}_{10}}\) be any values in the closed interval \({[0,\pi]}\). Show that
\({F}\) = \( {(1 + {\sin}^2 \theta_1)(1 + {\cos}^2 \theta_1)(1 + {\sin}^2 \theta_2)(1 + {\cos}^2 \theta_2)………(1 + {\sin}^2 \theta_{10})(1 + {\cos}^2 \theta_{10})} \) \({\displaystyle{\le({\frac{9}{4}})^{10}}}\).
What is the maximum value attainable by \({F}\) and at what values of \({{\theta}_1}\), \({{\theta}_2}\), … , \({{\theta}_{10}}\), is the maximum value attained?

Solution:
\({F}\) = \({\displaystyle{(1 + {\sin}^2 \theta_1)(1 + {\cos}^2 \theta_1)(1 + {\sin}^2 \theta_2)(1 + {\cos}^2 \theta_2)………(1 + {\sin}^2 \theta_{10})(1 + {\cos}^2 \theta_{10})}}\)
Now we will show that for any \({\theta \in}\) \({[0,\pi]}\) \({\displaystyle{(1 + {\sin}^2 \theta)(1 + {cos}^2 \theta) < {\frac{9}{4}}}}\)
\({\Leftrightarrow}\) \({\displaystyle{2 + {{\sin}^2{\theta}}{{\cos}^2{\theta}}}}\) \({\displaystyle{< {\frac{9}{4}}}}\)
\({\Leftrightarrow}\) \({\displaystyle{{{\sin}^2{\theta}}{{\cos}^2{\theta}}}}\) \({\displaystyle{< {\frac{1}{4}}}}\)

Read More…

August 3, 2015

Login

Register

GOOGLECreate an Account
X