Understand the problem

If A = \begin{bmatrix} 2&i\\i&0\end{bmatrix} , the trace of \(A^{10}\) is
Source of the problem
Sample Questions (MMA):2019
Topic
Linear Algebra
Difficulty Level
Medium
Suggested Book
Introduction to Linear Algebra by Pearson

Start with hints

Do you really need a hint? Try it first!

A = \begin{pmatrix} 2&i\\i&0 \end{pmatrix} ; \(A^2\) = \begin{pmatrix} 3&2i\\2i&-1 \end{pmatrix} \(A^3\) = \begin{pmatrix} 4&3i\\i&-2 \end{pmatrix} Now , we can observe that the trace is always going to be 2 . Now we’re to seal the deal
One way to think about this problem is to go into eigen values as the tr(A) .( Eigenvalues are a special set of scalars associated with a linear system of equations (i.e., a matrix equation) that are sometimes also known as characteristic roots, characteristic values  and  proper values, or latent roots .) (Eigenvectors are a special set of vectors associated with a linear system of equations (i.e., a matrix equation) that are sometimes also known as characteristic vectors, proper vectors, or latent vectors ), remains unaltered in between similar matrices.
| \(\lambda\)I – A | = 0 => \begin{matrix} \lambda -2&-i\\-i&\lambda \end{matrix} =0 => \(\lambda\)( \(\lambda\) – 2) + 1 = 0 => \(\lambda^2\) – 2\(\lambda\) + 1 = 0 =>\( (\lambda – 1)^2\) = 0 =>  \(\lambda\) = 1,1 So , what will be the canonical form ?
So , the canonical  matrix will be \begin{pmatrix} 1&0\\0&1 \end{pmatrix} = A’ , i.e \(\le P \epsilon GL_2(\mathbb{C})\) o.t A’ = \(PAP^{-1}\) \((A’)^{10}\) =  \begin{pmatrix} 1^{10}&0\\0&1^{10}\end{pmatrix} tr(\(A^{10}\)) = tr((\(P^{-1}A’P)^{10}\)) => tr(\(P^{-1}(A’)^{10}P)\) => tr((\(A’)^{10}\))  => (\(1^{10}\)) + (\(1^{10}\)) => 2(Ans)              

Watch the video

Connected Program at Cheenta

College Mathematics Program

The higher mathematics program caters to advanced college and university students. It is useful for I.S.I. M.Math Entrance, GRE Math Subject Test, TIFR Ph.D. Entrance, I.I.T. JAM. The program is problem driven. We work with candidates who have a deep love for mathematics. This program is also useful for adults continuing who wish to rediscover the world of mathematics.

Similar Problems

Problem on Inequality | ISI – MSQMS – B, 2018 | Problem 2a

Try this problem from ISI MSQMS 2018 which involves the concept of Inequality. You can use the sequential hints provided to solve the problem.

Data, Determinant and Simplex

This problem is a beautiful problem connecting linear algebra, geometry and data. Go ahead and dwelve into the glorious connection.

Problem on Integral Inequality | ISI – MSQMS – B, 2015

Try this problem from ISI MSQMS 2015 which involves the concept of Integral Inequality and real analysis. You can use the sequential hints provided to solve the problem.

Inequality Problem From ISI – MSQMS – B, 2017 | Problem 3a

Try this problem from ISI MSQMS 2017 which involves the concept of Inequality. You can use the sequential hints provided to solve the problem.

Problem on Natural Numbers | TIFR B 2010 | Problem 4

Try this problem of TIFR GS-2010 using your concepts of number theory and congruence based on natural numbers. You may use the sequential hints provided.

Definite Integral Problem | ISI 2018 | MSQMS- A | Problem 22

Try this problem from ISI-MSQMS 2018 which involves the concept of Real numbers, sequence and series and Definite integral. You can use the sequential hints

Inequality Problem | ISI – MSQMS 2018 | Part B | Problem 4

Try this problem from ISI MSQMS 2018 which involves the concept of Inequality and Combinatorics. You can use the sequential hints provided.

Problem on Inequality | ISI – MSQMS – B, 2018 | Problem 4b

Try this problem from ISI MSQMS 2018 which involves the concept of Inequality. You can use the sequential hints provided to solve the problem.

Positive Integers Problem | TIFR B 201O | Problem 12

Try this problem of TIFR GS-2010 using your concepts of number theory based on Positive Integers. You may use the sequential hints provided.

CYCLIC GROUP Problem | TIFR 201O | PART A | PROBLEM 1

Try this problem from TIFR GS-2010 which involves the concept of cyclic group. You can use the sequential hints provided to solve the problem.