INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

October 23, 2017

TIFR 2014 Problem 8 Solution -Checking one-one/onto-ness


TIFR 2014 Problem 8 Solution is a part of TIFR entrance preparation series. The Tata Institute of Fundamental Research is India's premier institution for advanced research in Mathematics. The Institute runs a graduate programme leading to the award of Ph.D., Integrated M.Sc.-Ph.D. as well as M.Sc. degree in certain subjects.
The image is a front cover of a book named Introduction to Real Analysis by R.G. Bartle, D.R. Sherbert. This book is very useful for the preparation of TIFR Entrance.

Also Visit: College Mathematics Program of Cheenta


Problem:True/False


Let (f:\mathbb{R} \to \mathbb{R}) be a continuous function such that (|f(x)-f(y)| \ge |x-y| ), for all (x,y \in \mathbb{R}). Then

A. f is both one-one and onto.

B. f is one-one and may be onto.

C. f is onto but may not be one-one.

D. f is neither one-one nor onto.


Discussion:


Let (f(x)=f(y)) for some (x,y\in \mathbb{R}). Then from the given inequality, we get (0 \ge |x-y| ) which is saying, (|x-y|=0 ) (since modulus can take non-negative values only) and that implies (x=y). So (f) is one-one.

From the inequality, we can see that (f) increases in a steady rate, we want to see whether it is onto or not.

We have (|f(x)-f(0)| \ge |x-0| = |x| ).

If now, (|f(x)| \le M ) then we will end up having (|f(x)-f(0)| \le |f(x)|+|f(0)| \le M+|f(0)| ) which is a contradiction.

So, (|f(x)|) is not bounded.

Already, (f) is continuous and one-one, so f must be increasing or decreasing (strictly). And since (|f|) is not bounded above, we use intermediate value theorem to conclude that (f) must be onto.


Helpdesk

  • What is this topic: Real Analysis
  • What are some of the associated concept: Continuous function, One-One Function
  • Book Suggestions: Introduction to Real Analysis by R.G. Bartle, D.R. Sherbert

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com