INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More

[et_pb_section fb_built="1" admin_label="section" _builder_version="3.22"][et_pb_row admin_label="row" _builder_version="3.25" background_size="initial" background_position="top_left" background_repeat="repeat"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text admin_label="Text" _builder_version="4.4.0" background_size="initial" background_position="top_left" background_repeat="repeat" hover_enabled="0"]

TIFR 2014 Problem 28 Solution is a part of TIFR entrance preparation series. The Tata Institute of Fundamental Research is India's premier institution for advanced research in Mathematics. The Institute runs a graduate programme leading to the award of Ph.D., Integrated M.Sc.-Ph.D. as well as M.Sc. degree in certain subjects.

The image is a front cover of a book named Introduction to Real Analysis by R.G. Bartle, D.R. Sherbert. This book is very useful for the preparation of TIFR Entrance.

Also Visit: College Mathematics Program of Cheenta

Let (X) be a topological space such that every function $f: X \to \mathbb{R}$ is continuous. Then

A. (X) has the discrete topology.

B. (X) has the indiscrete topology.

C. (X) is compact.

D. (X) is not connected.

**Discussion:**

We know that if (Y) is a discrete space then any function (g: Y \to Z ) is continuous.

Option A asks whether the converse to this is true in the case that (Z= \mathbb{R} ).

To prove/disprove whether (X) has the discrete topology or not it is enough to prove whether every singleton set is open or not.

If we can show that for every (x\in X) there exists a function (f_x :X \to \mathbb{R}) such that (f_x^{-1} (-1,1) = {x} ) then we are done. Because we are given that (f_x) if exists must be continuous, and since ((-1,1)) is open in (\mathbb{R}) we will have the inverse image of it open in (X), so ({x} ) will be open in (X).

Now, this target is easy to handle. We define for each (x\in X)

(f_x (x) = 0 ) and (f_x (y) =2) for (y \neq x ).

This (f_x) satisfies our desired property. So (X) is discrete.

Taking (X= \mathbb{Z}) (for example) shows that (X) does not need to be indiscrete nor does it have to be compact.

Taking (X= {0} ) shows that (X) may be connected. Ofcourse if (X) has cardinality more than 1, it is not connected.

**What is this topic:**Real Analysis**What are some of the associated concept:**Continuity, Discrete Space**Book Suggestions:**Introduction to Real Analysis by R.G. Bartle, D.R. Sherbert

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIAL
Google