INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More

TIFR 2013 Problem 39 Solution is a part of TIFR entrance preparation series. The Tata Institute of Fundamental Research is India's premier institution for advanced research in Mathematics. The Institute runs a graduate programme leading to the award of Ph.D., Integrated M.Sc.-Ph.D. as well as M.Sc. degree in certain subjects.

The image is a front cover of a book named Linear Algebra Done Right by Sheldon Axler. This book is very useful for the preparation of TIFR Entrance.

Also Visit: College Mathematics Program of Cheenta

If (A) is a complex nxn matrix with (A^2=A), then rank(A)=trace(A).

What are the eigenvalues of (A)? What is trace in terms of eigenvalues?

If (v) is an eigenvector of (A) with eigenvalue (\lambda) then (Av=\lambda v), therefore (\lambda v=Av=A^2v=\lambda Av =\lambda^2 v). Therefore, since any eigenvector is non-zero, (\lambda =0 or 1 ).

Sum of eigenvalues is trace of the matrix. So, trace(A)= number of non-zero eigenvalues= total number of eigenvalues - number of 0 eigenvalues

Since (A) satisfies the polynomial (x^2-x), the minimal polynomial is either (x) or (x-1) or (x(x-1)). This means the minimal polynomial breaks into distinct linear factors, so (A) is diagonalizable. Therefore, the algebraic multiplicity of an eigenvalue is same as its geometric multiplicity.

In total there are n eigenvalues (for A is nxn) and the number of 0-eigenvalues is the algebraic multiplicity of 0, which is same as the geometric multiplicity of 0, i.e, the dimension of the kernel of A.

Therefore, trace(A)(=n-)nullity(A).

By the rank-nullity theorem, the right hand side of the above equation is rank(A).

**What is this topic:**Linear Algebra**What are some of the associated concept:**Trace,Rank-Nullity Theorem**Book Suggestions:**Linear Algebra done Right by Sheldon Axler

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIAL
Google