INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

August 2, 2017

TIFR 2013 Problem 14 Solution -Uniform Continuous or Not?


TIFR 2013 Problem 14 Solution is a part of TIFR entrance preparation series. The Tata Institute of Fundamental Research is India's premier institution for advanced research in Mathematics. The Institute runs a graduate program leading to the award of Ph.D., Integrated M.Sc.-Ph.D. as well as M.Sc. degree in certain subjects.
The image is a front cover of a book named Introduction to Real Analysis by R.G. Bartle, D.R. Sherbert. This book is very useful for the preparation of TIFR Entrance.

Also Visit: College Mathematics Program of Cheenta


Problem:True/False


Let \(f:\mathbb{R}\to\mathbb{R}\) be defined by \(f(x)=sin(x^3)\). Then f is continuous but not uniformly continuous.


Hint: Can you find a sequence whose terms can get arbitrarily close to each other but the function gives distant values?


Discussion:


The function sin takes the value 1 at \(4n+1\) multiples of \(\pi/2\) and it is -1 at \(4n-1\) multiples of \(\pi/2\) .

Let \(x_n=(n\pi+\pi/2)^{1/3}\) That is, the function takes the value +1 when n is even and it is -1 when n is odd.

Now \(x_{n+1}-x_n\) \(=\) \(\frac{( n+1 )\pi+\pi/2-(n\pi+\pi/2)}{\text{terms involving n}}\)

This gives that the two terms \(x_{n+1}\) and \(x_n\) are close to each other. Because, the limiting value of the difference is zero. (So if you give me any positive real number \(\delta\) I can find an n such that the difference of two consecutive terms is less than that (\delta\) )

And what happens to \(f(x_n)\)? It is +1 and -1 for two consecutive terms (or -1 and +1). Therefore, the difference \(|f(x_{n+1})-f(x_n)|\) is always 2.

In particular, if I give \(\epsilon=1\) then whatever \(\delta\) you produce I will select two consecutive terms in the above sequence \(x_n\) which has distance less than \(\delta\) and the difference of values of \(f\) would not be less than 1.

This proves that \(f\) is not uniformly continuous.

Remark: \(f\) is continuous because it is a composition of two continuous functions ( the sine function applied to the polynomial function \(x\to x^3\) ).


Helpdesk

  • What is this topic: Real Analysis
  • What are some of the associated concept: Uniform continuity,
  • Book Suggestions: Introduction to Real Analysis by R.G. Bartle, D.R. Sherbert

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com