Understand the problem

Let \(p_1,p_2,p_3\)  be primes with \(p_2\neq p_3\), such that \(4+p_1p_2\) and \(4+p_1p_3\) are perfect squares. Find all possible values of \(p_1,p_2,p_3\).   

Start with hints

Do you really need a hint? Try it first!

Let \(4+p_1p_2=m^2\) and \(4+p_1p_3=n^2\), where \( m,n \in \mathbb{N}\). \(\Rightarrow p_1p_2=(m-2)(m+2)\) and \(p_1p_3=(n+2)(n-2)\). Since \(p_1,p_2,p_3\) are primes with \(p_2\neq p_3\) \(\Rightarrow m\neq n\).

 Case –I: \(p_2<p_3   \Rightarrow m<n\). Clearly, \(p_1=m+2=n-2,    \Rightarrow n=m+4\)              \(p_2=m-2\)    and                \(p_3=n+2=m+6\). Therefore, \((m+2),(m-2),(m+6)\) are all prime numbers.               We see that \(m=5\) satisfy the above condition. And then,\( p_1=7,p_2=3,p_3=11\) .    

Case-II: \(p_2>p_3    \Rightarrow   m>n\). \(\Rightarrow   p_1=m-2=n+2     \Rightarrow     m=n+4\)                        \( p_2=m+2=n+6\)   and                          \(p_3=n-2\). Now \((n+2),(n+6), (n-2)\) all are primes. Again , \(n=5\) satisfy this condition. Hence \(p_1=7,p_2=11,p_3=3\).  

Thus all possible values of \(p_1,p_2,p_3\) are ( 7,3,11)  and (7,11,3). Now need to conclude that there does not exist any more triple of prime numbers satisfying the given condition. Consider these numbers:            \(p_1=m+2,p_2=m-2,p_3=m+6\) , now the gaps between \(p_1,p_2,p_3\) are given by:                 \(p_1-p_2=4,   p_3-p_2=8  \)  and  \(p_3-p_1=4\). We see that for \(m>9\) these three gaps cannot be 4,8 and 4 simultaneously . That is at least one of these three gaps is greater than 4 for \(m>9\) . And between 1 to 9 only \(m=5\) satisfy the given condition. Hence there does not exist any more triples.   

Connected Program at Cheenta

Source of the problem

I.S.I. (Indian Statistical Institute) B.Stat/B.Math Entrance Examination 2017. Subjective Problem no. 6.

Topic
Number Theory

Difficulty Level

8.5 out of 10

I.S.I. & C.M.I. Entrance Program

Indian Statistical Institute and Chennai Mathematical Institute offer challenging bachelor’s program for gifted students. These courses are B.Stat and B.Math program in I.S.I., B.Sc. Math in C.M.I.

The entrances to these programs are far more challenging than usual engineering entrances. Cheenta offers an intense, problem-driven program for these two entrances.

Similar Problem

Restricted Maximum Likelihood Estimator |ISI MStat PSB 2012 Problem 9

This is a very beautiful sample problem from ISI MStat PSB 2012 Problem 9, It’s about restricted MLEs, how restricted MLEs are different from the unrestricted ones, if you miss delicacies you may miss the differences too . Try it! But be careful.

ISI MStat PSB 2013 Problem 2 | Application of sandwich Theorem

This is a very beautiful sample problem from ISI MStat PSB 2013 Problem 2 based on use of Sandwich Theorem . Let’s give it a try !!

ISI MStat PSB 2014 Problem 2 | Properties of a Function

This is a very beautiful sample problem from ISI MStat PSB 2014 Problem 2 based on the use and properties of a function. Let’s give it a try !!

ISI MStat PSB 2012 Problem 3 | Finding the Distribution of a Random Variable

This is a very beautiful sample problem from ISI MStat PSB 2012 Problem 3 based on finding the distribution of a random variable . Let’s give it a try !!

ISI MStat Mock Test 1 | Cheenta Statistics Department

Mock Tests are important. They help you to analyze your own performance, by collecting your own data. Cheenta Statistics Department has prepared the open to all first National Mock Test for all the students preparing for ISI MStat 2020, during the COVID 19 situation....

ISI MStat PSB 2010 Problem 10 | Uniform Modified

This is a very elegant sample problem from ISI MStat PSB 2010 Problem 10, based on properties of uniform, and its behavior when modified. Try it!

ISI MStat PSB 2014 Problem 1 | Vector Space & Linear Transformation

This is a very beautiful sample problem from ISI MStat PSB 2014 Problem 1 based on Vector space and Eigen values and Eigen vectors . Let’s give it a try !!

ISI MStat PSB 2012 Problem 10 | MVUE Revisited

This is a very simple sample problem from ISI MStat PSB 2012 Problem 10. It’s a very basic problem but very important and regular problem for statistics students, using one of the most beautiful theorem in Point Estimation. Try it!

ISI MStat PSB 2010 Problem 1 | Tricky Linear Algebra Question

This is a very beautiful sample problem from ISI MStat PSB 2010 Problem 1 based on Matrix multiplication and Eigenvalues and Eigenvectors.

ISI MStat PSB 2006 Problem 9 | Consistency and MVUE

This is a very simple sample problem from ISI MStat PSB 2006 Problem 9. It’s based on point estimation and finding consistent estimator and a minimum variance unbiased estimator and recognizing the subtle relation between the two types. Go for it!