Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Three Primes, ISI Subjective Entrance 2017

[et_pb_section fb_built="1" _builder_version="3.22.4"][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Understand the problem

[/et_pb_text][et_pb_text _builder_version="3.27.4" text_font="Raleway||||||||" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]Let \(p_1,p_2,p_3\)  be primes with \(p_2\neq p_3\), such that \(4+p_1p_2\) and \(4+p_1p_3\) are perfect squares. Find all possible values of \(p_1,p_2,p_3\).   

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Start with hints

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="3.22.7" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff" min_height="204px" custom_margin="||119px|||" custom_padding="|||18px||"][et_pb_tab title="Hint 0" _builder_version="3.22.4"]

Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="3.22.4"]

Let \(4+p_1p_2=m^2\) and \(4+p_1p_3=n^2\), where \( m,n \in \mathbb{N}\). \(\Rightarrow p_1p_2=(m-2)(m+2)\) and \(p_1p_3=(n+2)(n-2)\). Since \(p_1,p_2,p_3\) are primes with \(p_2\neq p_3\) \(\Rightarrow m\neq n\).

[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.22.4"]

 Case -I: \(p_2<p_3   \Rightarrow m<n\). Clearly, \(p_1=m+2=n-2,    \Rightarrow n=m+4\)              \(p_2=m-2\)    and                \(p_3=n+2=m+6\). Therefore, \((m+2),(m-2),(m+6)\) are all prime numbers.               We see that \(m=5\) satisfy the above condition. And then,\( p_1=7,p_2=3,p_3=11\) .    

[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.22.7"]

Case-II: \(p_2>p_3    \Rightarrow   m>n\). \(\Rightarrow   p_1=m-2=n+2     \Rightarrow     m=n+4\)                        \( p_2=m+2=n+6\)   and                          \(p_3=n-2\). Now \((n+2),(n+6), (n-2)\) all are primes. Again , \(n=5\) satisfy this condition. Hence \(p_1=7,p_2=11,p_3=3\).  

[/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="3.22.4"]

Thus all possible values of \(p_1,p_2,p_3\) are ( 7,3,11)  and (7,11,3). Now need to conclude that there does not exist any more triple of prime numbers satisfying the given condition. Consider these numbers:            \(p_1=m+2,p_2=m-2,p_3=m+6\) , now the gaps between \(p_1,p_2,p_3\) are given by:                 \(p_1-p_2=4,   p_3-p_2=8  \)  and  \(p_3-p_1=4\). We see that for \(m>9\) these three gaps cannot be 4,8 and 4 simultaneously . That is at least one of these three gaps is greater than 4 for \(m>9\) . And between 1 to 9 only \(m=5\) satisfy the given condition. Hence there does not exist any more triples.   

[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Connected Program at Cheenta

[/et_pb_text][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="3.22.4" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px" hover_enabled="0"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="4.3.4" hover_enabled="0"]

I.S.I. (Indian Statistical Institute) B.Stat/B.Math Entrance Examination 2017. Subjective Problem no. 6.

[/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="3.22.4" open="off"]Number Theory

[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="3.22.4" open="off"]

8.5 out of 10

[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="4.3.4" hover_enabled="0" open="off"]

Elementary Number Theory by David M. Burton [/et_pb_accordion_item][/et_pb_accordion][et_pb_blurb title="I.S.I. & C.M.I. Entrance Program" image="https://www.cheenta.com/wp-content/uploads/2018/03/ISI.png" _builder_version="3.22.4" header_level="h1" header_font="||||||||" header_text_color="#e02b20" header_font_size="50px" body_font="||||||||"]Indian Statistical Institute and Chennai Mathematical Institute offer challenging bachelor’s program for gifted students. These courses are B.Stat and B.Math program in I.S.I., B.Sc. Math in C.M.I.

The entrances to these programs are far more challenging than usual engineering entrances. Cheenta offers an intense, problem-driven program for these two entrances.

[/et_pb_blurb][et_pb_button button_url="https://www.cheenta.com/isicmientrance/" button_text="Learn More" button_alignment="center" _builder_version="3.22.4" custom_button="on" button_text_color="#ffffff" button_bg_color="#e02b20" button_border_color="#e02b20" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" background_layout="dark" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3"][/et_pb_button][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Similar Problem

[/et_pb_text][et_pb_post_slider include_categories="10" _builder_version="3.22.4"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com