INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

May 17, 2019

Three Primes, ISI Subjective Entrance 2017

[et_pb_section fb_built="1" _builder_version="3.22.4"][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Understand the problem

[/et_pb_text][et_pb_text _builder_version="3.27.4" text_font="Raleway||||||||" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]Let \(p_1,p_2,p_3\)  be primes with \(p_2\neq p_3\), such that \(4+p_1p_2\) and \(4+p_1p_3\) are perfect squares. Find all possible values of \(p_1,p_2,p_3\).   

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Start with hints

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="3.22.7" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff" min_height="204px" custom_margin="||119px|||" custom_padding="|||18px||"][et_pb_tab title="Hint 0" _builder_version="3.22.4"]

Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="3.22.4"]

Let \(4+p_1p_2=m^2\) and \(4+p_1p_3=n^2\), where \( m,n \in \mathbb{N}\). \(\Rightarrow p_1p_2=(m-2)(m+2)\) and \(p_1p_3=(n+2)(n-2)\). Since \(p_1,p_2,p_3\) are primes with \(p_2\neq p_3\) \(\Rightarrow m\neq n\).

[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.22.4"]

 Case -I: \(p_2<p_3   \Rightarrow m<n\). Clearly, \(p_1=m+2=n-2,    \Rightarrow n=m+4\)              \(p_2=m-2\)    and                \(p_3=n+2=m+6\). Therefore, \((m+2),(m-2),(m+6)\) are all prime numbers.               We see that \(m=5\) satisfy the above condition. And then,\( p_1=7,p_2=3,p_3=11\) .    

[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.22.7"]

Case-II: \(p_2>p_3    \Rightarrow   m>n\). \(\Rightarrow   p_1=m-2=n+2     \Rightarrow     m=n+4\)                        \( p_2=m+2=n+6\)   and                          \(p_3=n-2\). Now \((n+2),(n+6), (n-2)\) all are primes. Again , \(n=5\) satisfy this condition. Hence \(p_1=7,p_2=11,p_3=3\).  

[/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="3.22.4"]

Thus all possible values of \(p_1,p_2,p_3\) are ( 7,3,11)  and (7,11,3). Now need to conclude that there does not exist any more triple of prime numbers satisfying the given condition. Consider these numbers:            \(p_1=m+2,p_2=m-2,p_3=m+6\) , now the gaps between \(p_1,p_2,p_3\) are given by:                 \(p_1-p_2=4,   p_3-p_2=8  \)  and  \(p_3-p_1=4\). We see that for \(m>9\) these three gaps cannot be 4,8 and 4 simultaneously . That is at least one of these three gaps is greater than 4 for \(m>9\) . And between 1 to 9 only \(m=5\) satisfy the given condition. Hence there does not exist any more triples.   

[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Connected Program at Cheenta

[/et_pb_text][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="3.22.4" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px" hover_enabled="0"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="4.3.4" hover_enabled="0"]

I.S.I. (Indian Statistical Institute) B.Stat/B.Math Entrance Examination 2017. Subjective Problem no. 6.

[/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="3.22.4" open="off"]Number Theory

[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="3.22.4" open="off"]

8.5 out of 10

[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="4.3.4" hover_enabled="0" open="off"]

Elementary Number Theory by David M. Burton [/et_pb_accordion_item][/et_pb_accordion][et_pb_blurb title="I.S.I. & C.M.I. Entrance Program" image="https://www.cheenta.com/wp-content/uploads/2018/03/ISI.png" _builder_version="3.22.4" header_level="h1" header_font="||||||||" header_text_color="#e02b20" header_font_size="50px" body_font="||||||||"]Indian Statistical Institute and Chennai Mathematical Institute offer challenging bachelor’s program for gifted students. These courses are B.Stat and B.Math program in I.S.I., B.Sc. Math in C.M.I.

The entrances to these programs are far more challenging than usual engineering entrances. Cheenta offers an intense, problem-driven program for these two entrances.

[/et_pb_blurb][et_pb_button button_url="https://www.cheenta.com/isicmientrance/" button_text="Learn More" button_alignment="center" _builder_version="3.22.4" custom_button="on" button_text_color="#ffffff" button_bg_color="#e02b20" button_border_color="#e02b20" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" background_layout="dark" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3"][/et_pb_button][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Similar Problem

[/et_pb_text][et_pb_post_slider include_categories="10" _builder_version="3.22.4"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]

2 comments on “Three Primes, ISI Subjective Entrance 2017”

  1. I have a doubt in this question of 3 primes (ISI 2017).
    While Proving that for m>9,there is no solution,the hint says that gap is >8.What does this mean and how does it contradict the fact that there can be solutions for m>9.

    1. Yes, there was a mistake , I have corrected that. I think now it is clear to you. But more clearly I can say that the gap between two consecutive primes is a increasing function. This concept is used here.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
enter