Cheenta

Academy for Gifted Students

How Cheenta works to ensure student success?

Explore the Back-StoryThis is a Test of Mathematics Solution Subjective 90 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.

Also visit: I.S.I. & C.M.I. Entrance Course of Cheenta

:

Draw the region of points $ {\displaystyle{(x,y)}}$ in the plane, which satisfy $ {\displaystyle{|y| {\le} |x| {\le} 1}}$.

$ {\displaystyle{|y| {\le} |x| {\le} 1}}$ region will bounded by lines $ {\displaystyle{x = y}}$, $ {\displaystyle{x = -y}}$, $ {\displaystyle{x = -1}}$ & $ {\displaystyle{x = 1}}$. Why is that?

First note that ( |x| \le 1 ) implies:

Similarly, if we demand ( |y| \le 1 ) (the double shaded zone).

Now if we want ( |y| \le |x| ) . This can be achieved by

- \( y \le x \) when x and y are both positive (in the first quadrant); that is the region below the line x = y
- \( y \le -x\) when x is negative and y positive (in the second quadrant); hence the region below the line y = -x
- \(-y \le -x \) when (x, y) is in the third quadrant.
- \( -y \le x \) when (x, y) is in fourth quadrant.

Therefore the final region is the following shaded region:

This is a Test of Mathematics Solution Subjective 90 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.

Also visit: I.S.I. & C.M.I. Entrance Course of Cheenta

:

Draw the region of points $ {\displaystyle{(x,y)}}$ in the plane, which satisfy $ {\displaystyle{|y| {\le} |x| {\le} 1}}$.

$ {\displaystyle{|y| {\le} |x| {\le} 1}}$ region will bounded by lines $ {\displaystyle{x = y}}$, $ {\displaystyle{x = -y}}$, $ {\displaystyle{x = -1}}$ & $ {\displaystyle{x = 1}}$. Why is that?

First note that ( |x| \le 1 ) implies:

Similarly, if we demand ( |y| \le 1 ) (the double shaded zone).

Now if we want ( |y| \le |x| ) . This can be achieved by

- \( y \le x \) when x and y are both positive (in the first quadrant); that is the region below the line x = y
- \( y \le -x\) when x is negative and y positive (in the second quadrant); hence the region below the line y = -x
- \(-y \le -x \) when (x, y) is in the third quadrant.
- \( -y \le x \) when (x, y) is in fourth quadrant.

Therefore the final region is the following shaded region:

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIALAcademic Programs

Free Resources

Why Cheenta?

Online Live Classroom Programs

Online Self Paced Programs [*New]

Past Papers

More