How Cheenta works to ensure student success?
Explore the Back-Story

Test of Mathematics Solution Subjective 79 -Trigonometric Inequality

Test of Mathematics at the 10+2 Level

This is a Test of Mathematics Solution Subjective 79 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.


Also visit: I.S.I. & C.M.I. Entrance Course of Cheenta

Problem

Let {{\theta}_1}, {{\theta}_2}, ... , {{\theta}_{10}} be any values in the closed interval {[0,\pi]}. Show that
{F} = {(1 + {\sin}^2 \theta_1)(1 + {\cos}^2 \theta_1)(1 + {\sin}^2 \theta_2)(1 + {\cos}^2 \theta_2).........(1 + {\sin}^2 \theta_{10})(1 + {\cos}^2 \theta_{10})} {\displaystyle{\le({\frac{9}{4}})^{10}}}.
What is the maximum value attainable by {F} and at what values of {{\theta}_1}, {{\theta}_2}, ... , {{\theta}_{10}}, is the maximum value attained?


Solution

{F} = {\displaystyle{(1 + {\sin}^2 \theta_1)(1 + {\cos}^2 \theta_1)(1 + {\sin}^2 \theta_2)(1 + {\cos}^2 \theta_2).........(1 + {\sin}^2 \theta_{10})(1 + {\cos}^2 \theta_{10})}}
Now we will show that for any {\theta \in} {[0,\pi]} {\displaystyle{(1 + {\sin}^2 \theta)(1 + {cos}^2 \theta) < {\frac{9}{4}}}}
{\Leftrightarrow} {\displaystyle{2 + {{\sin}^2{\theta}}{{\cos}^2{\theta}}}} {\displaystyle{< {\frac{9}{4}}}}
{\Leftrightarrow} {\displaystyle{{{\sin}^2{\theta}}{{\cos}^2{\theta}}}} {\displaystyle{< {\frac{1}{4}}}}
Now {\displaystyle{{{\sin}^2{\theta}} + {{\cos}^2{\theta}} = 1}}
{\Rightarrow} {\displaystyle{({{\sin}^2{\theta}} + {{\cos}^2{\theta}})^2 = 1}}
{\Rightarrow} {\displaystyle{{\sin}^4{\theta} + {\cos}^4{\theta} + 2 {{\sin}^2{\theta}{\cos}^2{\theta}} = 1}}
{\Rightarrow} {\displaystyle{4 {{\sin}^2{\theta}}{{\cos}^2{\theta}}}} {\displaystyle{< 1}} [ as {{a^2 + b^2} > {2ab}} ]
{\Rightarrow} {\displaystyle{{{\sin}^2{\theta}}{{\cos}^2{\theta}}}} {\displaystyle{< {\frac{1}{4}}}}
So for any {\theta \in} {[0,\pi]} {\displaystyle{(1 + {\sin}^2 \theta)(1 + {\cos}^2 \theta) {\le} {\frac{9}{4}}}}
So {F {\le} ({\frac{9}{4}})^{10}} (proved)
Maximum value attained by {F} is {({\frac{9}{4}})^{10}} and will be attained for {{\theta_i} = {\frac{\pi}{2}} \pm {\frac{\pi}{4}}} for {i = 1, 2, ...., 10}

Test of Mathematics at the 10+2 Level

This is a Test of Mathematics Solution Subjective 79 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.


Also visit: I.S.I. & C.M.I. Entrance Course of Cheenta

Problem

Let {{\theta}_1}, {{\theta}_2}, ... , {{\theta}_{10}} be any values in the closed interval {[0,\pi]}. Show that
{F} = {(1 + {\sin}^2 \theta_1)(1 + {\cos}^2 \theta_1)(1 + {\sin}^2 \theta_2)(1 + {\cos}^2 \theta_2).........(1 + {\sin}^2 \theta_{10})(1 + {\cos}^2 \theta_{10})} {\displaystyle{\le({\frac{9}{4}})^{10}}}.
What is the maximum value attainable by {F} and at what values of {{\theta}_1}, {{\theta}_2}, ... , {{\theta}_{10}}, is the maximum value attained?


Solution

{F} = {\displaystyle{(1 + {\sin}^2 \theta_1)(1 + {\cos}^2 \theta_1)(1 + {\sin}^2 \theta_2)(1 + {\cos}^2 \theta_2).........(1 + {\sin}^2 \theta_{10})(1 + {\cos}^2 \theta_{10})}}
Now we will show that for any {\theta \in} {[0,\pi]} {\displaystyle{(1 + {\sin}^2 \theta)(1 + {cos}^2 \theta) < {\frac{9}{4}}}}
{\Leftrightarrow} {\displaystyle{2 + {{\sin}^2{\theta}}{{\cos}^2{\theta}}}} {\displaystyle{< {\frac{9}{4}}}}
{\Leftrightarrow} {\displaystyle{{{\sin}^2{\theta}}{{\cos}^2{\theta}}}} {\displaystyle{< {\frac{1}{4}}}}
Now {\displaystyle{{{\sin}^2{\theta}} + {{\cos}^2{\theta}} = 1}}
{\Rightarrow} {\displaystyle{({{\sin}^2{\theta}} + {{\cos}^2{\theta}})^2 = 1}}
{\Rightarrow} {\displaystyle{{\sin}^4{\theta} + {\cos}^4{\theta} + 2 {{\sin}^2{\theta}{\cos}^2{\theta}} = 1}}
{\Rightarrow} {\displaystyle{4 {{\sin}^2{\theta}}{{\cos}^2{\theta}}}} {\displaystyle{< 1}} [ as {{a^2 + b^2} > {2ab}} ]
{\Rightarrow} {\displaystyle{{{\sin}^2{\theta}}{{\cos}^2{\theta}}}} {\displaystyle{< {\frac{1}{4}}}}
So for any {\theta \in} {[0,\pi]} {\displaystyle{(1 + {\sin}^2 \theta)(1 + {\cos}^2 \theta) {\le} {\frac{9}{4}}}}
So {F {\le} ({\frac{9}{4}})^{10}} (proved)
Maximum value attained by {F} is {({\frac{9}{4}})^{10}} and will be attained for {{\theta_i} = {\frac{\pi}{2}} \pm {\frac{\pi}{4}}} for {i = 1, 2, ...., 10}

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
Menu
Trial
Whatsapp
magic-wandrockethighlight