Test of Mathematics at the 10+2 Level

This is a Test of Mathematics Solution Subjective 66 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.


Also visit: I.S.I. & C.M.I. Entrance Course of Cheenta

Problem

If c is a real number with 0 < c < 1, then show that the values taken by the function y = {frac {x^2+2x+c}{x^2+4x+3c}} , as x varies over real numbers, range over all real numbers.


Solution

y = {\frac {x^2+2x+c}{x^2+4x+3c}}
or {yx^2} + 4yx + 3cy = {x^2} + 2x + c
or {x^2} (y-1) + (4y-2)x + 3cy – c = 0
Now if we can show that the discriminant {\ge{0}} for all y then for all real y there exist a real x.
Now, discriminant is {(4y-2)^2} – 4(y-1)(3cy-c)
We need to show {(4y-2)^2} – 4(y-1)(3cy-c) > 0 for any 0 < c < 1. (16-12c) {4^2} – (16-16c)y + (4-4c) > 0.
This is parabola opening upword.
Now if its discriminant < 0 then this equation is always > 0.
So this is equivalent to prove
{(16-16c)^2} – 4 (16-12c)(4-4c) < 0.
or {(2-2c)^2} – (4-3c)(1-c) < 0
or {c^2} -C < 0

Now given 1>c>0 so {c^2} <c

or {c^2} -c < 0

Conclusion: So for 1>c>0 y = {\frac{x^2+2x+c}{x^2+4x+3c}}

Range over all real number when x varies over all real number.