How Cheenta works to ensure student success?

Explore the Back-StoryThis is a Test of Mathematics Solution Subjective 43 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.

Also visit: I.S.I. & C.M.I. Entrance Course of Cheenta

Show that the equation $ x^3 + 7x - 14(n^2 +1) = 0 $ has no integral root for any integer n.

We note that $ 14(n^2 +1) - 7x = x^3 $ implies $ x^3 $ is divisible by 7. This implies x is divisible by 7 (as 7 is a prime number). Suppose x= 7x'. Hence we can rewrite the given equation as:

$ 7^3 x'^3 + 7 \times 7 x' - 14 (n^2 +1 ) = 0 $.

Cancelling out a 7 we have $ 7^2 {x'}^3 + 7{x'} = 2(n^2 +1) $. Since 7 divides left hand side, it must also divide the right hand side. Since 7 cannot divide 2, it must divide $ n^2 + 1 $ as 7 and 2 are coprime. Note that 7 cannot divide $ n^2 +1 $ as square of a number always gives remainder 0, 1, 4, 2 when divided by 7 and never 6. But if $ n^2 + 1 $ is divisible by 7 then $ n^2 $ must give remainder 6 when divided by 7. Hence contradiction.

*Necessary Lemma: square of a number always gives remainder 0, 1, 4, 2 when divided by 7*

$ n \equiv 0, \pm 1 , \pm 2 , \pm 3 \mod 7\Rightarrow n^2 \equiv 0, 1, 4, 9 (=2) \mod 7 $

**Key Ideas: Modular Arithmetic**

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIALAcademic Programs

Free Resources

Why Cheenta?

Online Live Classroom Programs

Online Self Paced Programs [*New]

Past Papers

More