INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More

Bose Olympiad Project Round is Live now. Learn More

Test of Mathematics Solution Subjective 38 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.

Also see: Cheenta I.S.I. & C.M.I. Entrance Course

Show that if a prime number p is divided by 30, the remainder is either prime or 1.

Suppose p = 30Q + R

(here p is the prime, Q and R are quotient and remainders respectively when p is divided by 30).

For all primes less than 30, Q = 0 and R=p. So that satisfies the claim of this problem.

If p > 30, suppose the remainder R is composite (not a prime). Since R 6 and N > 6 then MN (=R) > 36 > 30. But R < 30. So both M and N cannot exceed 6. Suppose M < 6. Then M must be divisible by 2, 3, or 5. We consider the case when M is divisible by 2 (other cases are analogous).

Suppose M = 2M'

R = MN = 2M'N

p = 30Q + 2M'N

But then the right hand side is divisible by 2. Hence the left hand side is also divisible by 2. But that is not possible as p is a prime larger than 30.

Hence R cannot be composite. This implies R is either a prime or 1.

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIAL