Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Test of Mathematics Solution Subjective 176 - Value of a Polynomial at x = n+1

Test of Mathematics at the 10+2 Level

This is a Test of Mathematics Solution Subjective 176 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.


Also visit: I.S.I. & C.M.I. Entrance Course of Cheenta

Problem

Suppose that P(x) is a polynomial of degree n such that $ P(k) = \frac {k}{k+1} $ for k = 0, 1, 2, ..., n . Find the value of P(n+1).


Solution

Consider an auxiliary polynomial g(x) = (x+1)P(x) - x . g(x) is an n+1 degree polynomial (as P(x) is n degree and we multiply (x+1) with it). We note that g(0) = g(1) = ... = g(n) = 0  (as the given condition allows (k+1) P(k) - k = 0 for all k from 0 to n). Hence 0, 1, 2, ... , n are the n+1 roots of g(x).

Therefore we may write g(x) = (x+1)P(x) - x = C(x)(x-1)(x-2)...(x-n) where C is a constant. Put x = -1. We get g(-1) = (-1+1)P(-1) - (-1) = C(-1)(-1-1)(-1-2)...(-1-n).

Thus 1 = C $ (-1)^{(n+1) } (n+1)! $ gives us the value of C. We put the value of C in the equation (x+1)P(x) - x = C(x)(x-1)(x-2)...(x-n) and replace x by n+1 to get the value of P(n+1).

$ (n+2)P(n+1) - (n+1) = \frac { (-1)^{(n+1)}}{(n+1)!} (n+1)(n)(n-1) ... (1) $ implying $ P(n+1) = \frac { (-1)^{(n+1)} + (n+1)}{(n+2)} $

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com