How Cheenta works to ensure student success?

Explore the Back-StoryThis is a Test of Mathematics Solution Subjective 176 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.

Also visit: I.S.I. & C.M.I. Entrance Course of Cheenta

Suppose that P(x) is a polynomial of degree n such that for k = 0, 1, 2, ..., n . Find the value of P(n+1).

Consider an auxiliary polynomial g(x) = (x+1)P(x) - x . g(x) is an n+1 degree polynomial (as P(x) is n degree and we multiply (x+1) with it). We note that g(0) = g(1) = ... = g(n) = 0 (as the given condition allows (k+1) P(k) - k = 0 for all k from 0 to n). Hence 0, 1, 2, ... , n are the n+1 roots of g(x).

Therefore we may write g(x) = (x+1)P(x) - x = C(x)(x-1)(x-2)...(x-n) where C is a constant. Put x = -1. We get g(-1) = (-1+1)P(-1) - (-1) = C(-1)(-1-1)(-1-2)...(-1-n).

Thus 1 = C gives us the value of C. We put the value of C in the equation (x+1)P(x) - x = C(x)(x-1)(x-2)...(x-n) and replace x by n+1 to get the value of P(n+1).

implying

This is a Test of Mathematics Solution Subjective 176 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.

Also visit: I.S.I. & C.M.I. Entrance Course of Cheenta

Suppose that P(x) is a polynomial of degree n such that for k = 0, 1, 2, ..., n . Find the value of P(n+1).

Consider an auxiliary polynomial g(x) = (x+1)P(x) - x . g(x) is an n+1 degree polynomial (as P(x) is n degree and we multiply (x+1) with it). We note that g(0) = g(1) = ... = g(n) = 0 (as the given condition allows (k+1) P(k) - k = 0 for all k from 0 to n). Hence 0, 1, 2, ... , n are the n+1 roots of g(x).

Therefore we may write g(x) = (x+1)P(x) - x = C(x)(x-1)(x-2)...(x-n) where C is a constant. Put x = -1. We get g(-1) = (-1+1)P(-1) - (-1) = C(-1)(-1-1)(-1-2)...(-1-n).

Thus 1 = C gives us the value of C. We put the value of C in the equation (x+1)P(x) - x = C(x)(x-1)(x-2)...(x-n) and replace x by n+1 to get the value of P(n+1).

implying

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIALAcademic Programs

Free Resources

Why Cheenta?

Online Live Classroom Programs

Online Self Paced Programs [*New]

Past Papers

More