Test of Mathematics at the 10+2 Level

This is a Test of Mathematics Solution Subjective 157 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.


Also visit: I.S.I. & C.M.I. Entrance Course of Cheenta

Problem

Evaluate \mathbf { \lim_{n to \infty } { (1 + \frac{1}{2n}) (1 + \frac{3}{2n} )(1+ \frac{5}{2n}) + ... + (1+ \frac{2n-1}{2n})}^{\frac{1}{2n}} }


Discussion

Let \mathbf { y = { (1 + \frac{1}{2n}) (1 + \frac{3}{2n} )(1+ \frac{5}{2n}) + ... + (1+ \frac{2n-1}{2n})}^{\frac{1}{2n}} }

Then \mathbf { \log (y) = \frac{1}{2n}{ \log (1 + \frac{1}{2n}) + \log (1 + \frac{3}{2n} )+ \log (1+ \frac{5}{2n}) + ... + log (1+ \frac{2n-1}{2n})} }

This implies \log (y) = \frac{1}{2n} { \log (1 + \frac{1}{2n}) + \cdots + \log (1 + \frac{2n}{2n}) } \frac{1}{2n} { \log (1 + \frac{2}{2n}) + \log (1 + \frac{4}{2n} )+ \log (1+ \frac{6}{2n}) + ... + \log (1+ \frac{2n}{2n}) }

Hence \lim_{n \to \infty} \log (y) = \int_0^1 \log (1+x) dx - \frac{1}{2} \int_0^{1} \log(1+x) dx = \frac{1}{2} \int_{0}^1 \log (1+x) dx = \log 2 - \frac {1}{2} (Answer)