Cheenta

Academy for Gifted Students

How Cheenta works to ensure student success?

Explore the Back-StoryThis is a Test of Mathematics Solution Subjective 150 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.

Also visit: I.S.I. & C.M.I. Entrance Course of Cheenta

Find the maximum among $ \mathbf { 1 , 2^{1/2} , 3^{1/3} , 4^{1/4} , ... }$ .

Consider the function $ \mathbf { f(x) = x^{1/x} }$ . We employ standard techniques to compute the maxima.

Take logarithm on both sides we have $ \mathbf { \log f(x) = \frac{1}{x} \log x }$ . Next find out the derivative:

$ \mathbf {\frac {1}{f(x)} f'(x) = \frac{-1}{x^2} \log x + \frac{1}{x}\cdot\frac{1}{x} implies f'(x) = f(x) \cdot \frac{1}{x^2} (1 - \log x) }$

Since $ \mathbf { f(x) = x^{1/x} }$ is always positive for positive x and so is $ \mathbf {\frac{1}{x^2}}$ sign of the derivative depends only on (1-logx). Hence the derivative is 0 at x = e (2.71 approximately), positive before that and negative after that. Hence the function has a maxima at x = e.

We check the values at x=2 and x=3 and easy computations show that $ \mathbf { 3^{1/3} > 2^{1/2} }$. Hence $ \mathbf {3^{1/3} }$ is the largest value.

**Special Note**

One may ask for a non calculus proof of this problem. The basic idea is to understand that the inequality

$ \mathbf { n^{1/n} > (n+1)^{1/n+1}\Rightarrow n^{n+1} > (n+1)^n \Rightarrow n\cdot n^n > (n+1)^n \\ \Rightarrow n > \frac{(n+1)^n}{n^n}\Rightarrow n > (1+ \frac{1}{n})^n }$

It is easy to show that the quantity $ \mathbf { (1+ \frac{1}{n})^n }$ lies within 2 and 3 for all values of n. Hence the inequality $ \mathbf {n > (1+ \frac{1}{n})^n }$ is true for n > 3. The result follows.

This is a Test of Mathematics Solution Subjective 150 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.

Also visit: I.S.I. & C.M.I. Entrance Course of Cheenta

Find the maximum among $ \mathbf { 1 , 2^{1/2} , 3^{1/3} , 4^{1/4} , ... }$ .

Consider the function $ \mathbf { f(x) = x^{1/x} }$ . We employ standard techniques to compute the maxima.

Take logarithm on both sides we have $ \mathbf { \log f(x) = \frac{1}{x} \log x }$ . Next find out the derivative:

$ \mathbf {\frac {1}{f(x)} f'(x) = \frac{-1}{x^2} \log x + \frac{1}{x}\cdot\frac{1}{x} implies f'(x) = f(x) \cdot \frac{1}{x^2} (1 - \log x) }$

Since $ \mathbf { f(x) = x^{1/x} }$ is always positive for positive x and so is $ \mathbf {\frac{1}{x^2}}$ sign of the derivative depends only on (1-logx). Hence the derivative is 0 at x = e (2.71 approximately), positive before that and negative after that. Hence the function has a maxima at x = e.

We check the values at x=2 and x=3 and easy computations show that $ \mathbf { 3^{1/3} > 2^{1/2} }$. Hence $ \mathbf {3^{1/3} }$ is the largest value.

**Special Note**

One may ask for a non calculus proof of this problem. The basic idea is to understand that the inequality

$ \mathbf { n^{1/n} > (n+1)^{1/n+1}\Rightarrow n^{n+1} > (n+1)^n \Rightarrow n\cdot n^n > (n+1)^n \\ \Rightarrow n > \frac{(n+1)^n}{n^n}\Rightarrow n > (1+ \frac{1}{n})^n }$

It is easy to show that the quantity $ \mathbf { (1+ \frac{1}{n})^n }$ lies within 2 and 3 for all values of n. Hence the inequality $ \mathbf {n > (1+ \frac{1}{n})^n }$ is true for n > 3. The result follows.

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIALAcademic Programs

Free Resources

Why Cheenta?

Online Live Classroom Programs

Online Self Paced Programs [*New]

Past Papers

More