Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Test of Mathematics Solution Subjective 116 - Angles in a Triangle

Test of Mathematics at the 10+2 Level

This is a Test of Mathematics Solution Subjective 116 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.


Problem

If A, B, C are the angles of a triangle, then show that $ \displaystyle { \sin A + \sin B - \cos C \le \frac {3 \sqrt{3}}{2}}$


Solution:

$ \displaystyle { \sin A + \sin B - \cos C } $
$ \displaystyle { = \sin A + \sin B - \cos (\pi - (A+B)) } $
$ \displaystyle { = \sin A + \sin B + \sin (A+B) } $
$ \displaystyle { = 2\sin \frac{(A+B)}{2} \cos \frac{(A-B)}{2} + 2\sin \frac{(A+B)}{2} \cos \frac{(A+B)}{2} } $
$ \displaystyle { = 2\sin \frac{(A+B)}{2} \left( \cos \frac{(A-B)}{2} + \cos \frac{(A+B)}{2}\right ) } $
$ \displaystyle { = 2\sin \frac{(A+B)}{2} 2\cos \frac{A}{2} \cos \frac{B}{2} } $
$ \displaystyle { = 4\sin \frac{(\pi -C)}{2} \cos \frac{A}{2} \cos \frac{B}{2} } $
$ \displaystyle { = 4\sin \left(\frac{\pi}{2} - \frac{C}{2} \right) \cos \frac{A}{2} \cos \frac{B}{2} } $
$ \displaystyle { = 4\cos \frac{C}{2} \cos \frac{A}{2} \cos \frac{B}{2} } $

We apply Jensen's Inequality and Arithmetic Mean - Geometric Mean inequality here. Since cosine function is concave in the interval $ [0, \frac{\pi}{2} ] $, we have
$ \displaystyle { \left (\cos \frac{C}{2} \cos \frac{A}{2} \cos \frac{B}{2} \right )^{\frac{1}{3}} \le \frac{\cos \frac{C}{2} + \cos \frac{A}{2} +\cos \frac{B}{2}}{3} \le \cos \left ( \frac{1}{3}\times \frac{A}{2} + \frac{1}{3}\times \frac{B}{2} + \frac{1}{3}\times \frac{C}{2} \right ) } $
This implies $ \displaystyle { \left (\cos \frac{C}{2} \cos \frac{A}{2} \cos \frac{B}{2} \right )^{\frac{1}{3}} \le \cos \left ( \frac{A+B+C}{6}\right ) } $
$ \displaystyle { \Rightarrow \left (\cos \frac{C}{2} \cos \frac{A}{2} \cos \frac{B}{2} \right )^{\frac{1}{3}} \le \cos \frac{\pi}{6} } $
$ \displaystyle { \Rightarrow \left (\cos \frac{C}{2} \cos \frac{A}{2} \cos \frac{B}{2} \right )^{\frac{1}{3}} \le \frac{\sqrt{3}}{2} } $
$ \displaystyle { \Rightarrow \cos \frac{C}{2} \cos \frac{A}{2} \cos \frac{B}{2} \le \frac{3\sqrt{3}}{8} } $
$ \displaystyle { \Rightarrow 4\cos \frac{C}{2} \cos \frac{A}{2} \cos \frac{B}{2} \le \frac{3\sqrt{3}}{2} } $


Chatuspathi:

  • What is this topic: Properties of triangle
  • What are some of the associated concept: Jensen Inequality, Arithmetic Mean-Geometric Mean Inequality
  • Where can learn these topics:  I.S.I. & C.M.I. Entrance Course of Cheenta, discusses these topics in the ‘Inequality’ module.
  • Book Suggestions: 'Secrets in Inequality' by Pam Kim Hung

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com