How Cheenta works to ensure student success?
Explore the Back-Story

Test of Mathematics Solution Subjective 115 - Trigonometric Relation

Test of Mathematics at the 10+2 Level

This is a Test of Mathematics Solution Subjective 115 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.


Problem

If $\displaystyle { \frac{\sin^4 x }{a} + \frac{\cos^4 x }{b} = \frac{1}{a+b} }$ , then show that $ {\frac{1}{(a+b)^2} }$


Solution

Put $ \sin^2 x = t $.

The given expression reduces to $ \displaystyle { \frac{t^2 }{a} + \frac{1+t^2 -2t }{b} = \frac{1}{a+b} }$

$ \displaystyle {\Rightarrow (a+b)t^2 -2at +a - \frac{ab}{a+b} = 0 }$
$ \displaystyle {\Rightarrow (a+b)^2t^2 -2a(a+b)t +a^2 = 0 }$
$ \displaystyle {\Rightarrow ((a+b)t-a)^2=0 }$
$ \displaystyle {\Rightarrow \frac{a}{a+b}=t }$
$ \displaystyle {\Rightarrow \frac{b}{a+b}=1-t }$

Hence replacing in the required expression we get

$ \displaystyle { \frac{\sin^6 x }{a^2} + \frac{\cos^6 x }{b^2} }$
$ \displaystyle {=\frac{t^3 }{a^2} + \frac{(1-t)^3 }{b^2}}$
$ \displaystyle {=\frac{a^3 }{(a+b)^3a^2} + \frac{b^3 }{(a+b)^3b^2}}$
$ \displaystyle {=\frac{a}{(a+b)^3} + \frac{b}{(a+b)^3} }$
$ \displaystyle {=\frac{a+b}{(a+b)^3} }$
$ \displaystyle {=\frac{1}{(a+b)^2} }$

(Proved)


Chatuspathi:

  • What is this topic: Trigonometry
  • What are some of the associated concept: Change of Variables
  • Where can learn these topics: Cheenta I.S.I. & C.M.I. course, discusses these topics in the ‘Trigonometry’ module.
  • Book Suggestions: Trigonometry Volume I by S.L. Loney

Test of Mathematics at the 10+2 Level

This is a Test of Mathematics Solution Subjective 115 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.


Problem

If $\displaystyle { \frac{\sin^4 x }{a} + \frac{\cos^4 x }{b} = \frac{1}{a+b} }$ , then show that $ {\frac{1}{(a+b)^2} }$


Solution

Put $ \sin^2 x = t $.

The given expression reduces to $ \displaystyle { \frac{t^2 }{a} + \frac{1+t^2 -2t }{b} = \frac{1}{a+b} }$

$ \displaystyle {\Rightarrow (a+b)t^2 -2at +a - \frac{ab}{a+b} = 0 }$
$ \displaystyle {\Rightarrow (a+b)^2t^2 -2a(a+b)t +a^2 = 0 }$
$ \displaystyle {\Rightarrow ((a+b)t-a)^2=0 }$
$ \displaystyle {\Rightarrow \frac{a}{a+b}=t }$
$ \displaystyle {\Rightarrow \frac{b}{a+b}=1-t }$

Hence replacing in the required expression we get

$ \displaystyle { \frac{\sin^6 x }{a^2} + \frac{\cos^6 x }{b^2} }$
$ \displaystyle {=\frac{t^3 }{a^2} + \frac{(1-t)^3 }{b^2}}$
$ \displaystyle {=\frac{a^3 }{(a+b)^3a^2} + \frac{b^3 }{(a+b)^3b^2}}$
$ \displaystyle {=\frac{a}{(a+b)^3} + \frac{b}{(a+b)^3} }$
$ \displaystyle {=\frac{a+b}{(a+b)^3} }$
$ \displaystyle {=\frac{1}{(a+b)^2} }$

(Proved)


Chatuspathi:

  • What is this topic: Trigonometry
  • What are some of the associated concept: Change of Variables
  • Where can learn these topics: Cheenta I.S.I. & C.M.I. course, discusses these topics in the ‘Trigonometry’ module.
  • Book Suggestions: Trigonometry Volume I by S.L. Loney

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
Menu
Trial
Whatsapp
magic-wandrockethighlight