How Cheenta works to ensure student success?
Explore the Back-Story

Test of Mathematics Solution Subjective 107 - Perpendiculars from Center

Test of Mathematics at the 10+2 Level

This is a Test of Mathematics Solution Subjective 107 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.


Also visit: I.S.I. & C.M.I. Entrance Course of Cheenta

Problem:

If a, b and c are the lengths of the sides of a triangle ABC and  if \( p_1 , p_2 \) and \( p_3 \)   are the lengths of the perpendiculars drawn from the circumcentre onto the sides BC, CA and AB respectively, then show that

$ {\displaystyle{\frac{a}{p_1}} + {\frac{b}{p_2}} + {\frac{c}{p_3}} = {\frac{abc}{4{p_1}{p_2}{p_3}}}} $.

Solution

:
Let  O be the circum centre

$ {\displaystyle{\frac{a}{p_1}}}$ = 2 $ {\displaystyle \left({\frac{\frac{a}{2}}{p_1}}\right) = 2 \tan \left({\frac{1}{2}}{\angle{BOC}}\right)}$

Similarly, $ {\displaystyle{\frac{b}{p_2}} =  2 \tan \left({\frac{1}{2}}{\angle{AOC}}\right)}$

& $ {\displaystyle{\frac{c}{p_3}} = 2 \tan \left({\frac{1}{2}}{\angle{AOB}}\right)}$
Now, $ {\displaystyle{\frac{1}{2}}{\angle{BOC}} + {\frac{1}{2}}{\angle{AOC}} + {\frac{1}{2}}{\angle{AOB}}}$ = $ {\displaystyle{\frac{1}{2}} ({\angle{BOC}} + {\angle{AOC}} + {\angle{AOB}})}$
= $ {\displaystyle{\frac{1}{2}} (360^{\circ})}$ = $ {\displaystyle{180^{\circ}}}$


Lemma
For $ {\displaystyle{\alpha},{\beta},{\gamma} > 0}$ & $ {\displaystyle{\alpha} + {\beta} + {\gamma} = {\pi}}$
$ {\displaystyle{\tan{\alpha}} + {\tan{\beta}} + {\tan{\gamma}} = {\tan{\alpha}}{\times}{\tan{\beta}}{\times}{\tan{\gamma}}}$
$ {\displaystyle{\alpha} + {\beta} + {\gamma} = {\pi}}$
$ {\Rightarrow}$ $ {\displaystyle{\alpha + \beta} = {\pi - \gamma}}$
$ {\Rightarrow}$ $ {\displaystyle{\tan (\alpha + \beta)} = {\tan (\pi - \gamma)}}$
$ {\Rightarrow}$ $ {\displaystyle{\frac{\tan{\alpha} + \tan{\beta}}{1 - \tan{\alpha} \tan{\beta}}} = -\tan{\gamma}}$
$ {\Rightarrow}$ $ {\displaystyle{\tan\alpha + \tan \beta} = {\tan{\alpha}. \tan{\beta} .\tan{\gamma}} - \tan\gamma}$
$ {\Rightarrow}$ $ {\displaystyle{\tan{\alpha}} + {\tan{\beta}} + {\tan{\gamma}} = {\tan{\alpha}}{\times}{\tan{\beta}}{\times}{\tan{\gamma}}}$ (lemma proved)


So, $ {\displaystyle{\frac{1}{2}}\left({\frac{a}{p_1}} + {\frac{b}{p_2}} + {\frac{c}{p_3}}\right) = \tan({\frac{1}{2}}\angle{AOB}) + \tan({\frac{1}{2}}\angle{BOC}) + \tan({\frac{1}{2}}\angle{COA})}$
= $ {\displaystyle{\tan({\frac{1}{2}}\angle{AOB})\times \tan({\frac{1}{2}}\angle{BOC})\times \tan({\frac{1}{2}}\angle{COA})}}$ [ as $ {\displaystyle{\angle{AOB} + \angle{BOC} + \angle{COA} = {360}^{\circ}}}$ ]
= $ {\displaystyle{\frac{a}{2{p_1}}}\times{\frac{b}{2{p_2}}}\times{\frac{c}{2{p_3}}}}$
= $ {\displaystyle{\frac{abc}{8{p_1}{p_2}{p_3}}}}$
$ \Rightarrow \frac{a}{p_1} + \frac{b}{p_2} + \frac{c}{p_3} = \frac{abc}{4{p_1}{p_2}{p_3} } $ ( proved )

Test of Mathematics at the 10+2 Level

This is a Test of Mathematics Solution Subjective 107 (from ISI Entrance). The book, Test of Mathematics at 10+2 Level is Published by East West Press. This problem book is indispensable for the preparation of I.S.I. B.Stat and B.Math Entrance.


Also visit: I.S.I. & C.M.I. Entrance Course of Cheenta

Problem:

If a, b and c are the lengths of the sides of a triangle ABC and  if \( p_1 , p_2 \) and \( p_3 \)   are the lengths of the perpendiculars drawn from the circumcentre onto the sides BC, CA and AB respectively, then show that

$ {\displaystyle{\frac{a}{p_1}} + {\frac{b}{p_2}} + {\frac{c}{p_3}} = {\frac{abc}{4{p_1}{p_2}{p_3}}}} $.

Solution

:
Let  O be the circum centre

$ {\displaystyle{\frac{a}{p_1}}}$ = 2 $ {\displaystyle \left({\frac{\frac{a}{2}}{p_1}}\right) = 2 \tan \left({\frac{1}{2}}{\angle{BOC}}\right)}$

Similarly, $ {\displaystyle{\frac{b}{p_2}} =  2 \tan \left({\frac{1}{2}}{\angle{AOC}}\right)}$

& $ {\displaystyle{\frac{c}{p_3}} = 2 \tan \left({\frac{1}{2}}{\angle{AOB}}\right)}$
Now, $ {\displaystyle{\frac{1}{2}}{\angle{BOC}} + {\frac{1}{2}}{\angle{AOC}} + {\frac{1}{2}}{\angle{AOB}}}$ = $ {\displaystyle{\frac{1}{2}} ({\angle{BOC}} + {\angle{AOC}} + {\angle{AOB}})}$
= $ {\displaystyle{\frac{1}{2}} (360^{\circ})}$ = $ {\displaystyle{180^{\circ}}}$


Lemma
For $ {\displaystyle{\alpha},{\beta},{\gamma} > 0}$ & $ {\displaystyle{\alpha} + {\beta} + {\gamma} = {\pi}}$
$ {\displaystyle{\tan{\alpha}} + {\tan{\beta}} + {\tan{\gamma}} = {\tan{\alpha}}{\times}{\tan{\beta}}{\times}{\tan{\gamma}}}$
$ {\displaystyle{\alpha} + {\beta} + {\gamma} = {\pi}}$
$ {\Rightarrow}$ $ {\displaystyle{\alpha + \beta} = {\pi - \gamma}}$
$ {\Rightarrow}$ $ {\displaystyle{\tan (\alpha + \beta)} = {\tan (\pi - \gamma)}}$
$ {\Rightarrow}$ $ {\displaystyle{\frac{\tan{\alpha} + \tan{\beta}}{1 - \tan{\alpha} \tan{\beta}}} = -\tan{\gamma}}$
$ {\Rightarrow}$ $ {\displaystyle{\tan\alpha + \tan \beta} = {\tan{\alpha}. \tan{\beta} .\tan{\gamma}} - \tan\gamma}$
$ {\Rightarrow}$ $ {\displaystyle{\tan{\alpha}} + {\tan{\beta}} + {\tan{\gamma}} = {\tan{\alpha}}{\times}{\tan{\beta}}{\times}{\tan{\gamma}}}$ (lemma proved)


So, $ {\displaystyle{\frac{1}{2}}\left({\frac{a}{p_1}} + {\frac{b}{p_2}} + {\frac{c}{p_3}}\right) = \tan({\frac{1}{2}}\angle{AOB}) + \tan({\frac{1}{2}}\angle{BOC}) + \tan({\frac{1}{2}}\angle{COA})}$
= $ {\displaystyle{\tan({\frac{1}{2}}\angle{AOB})\times \tan({\frac{1}{2}}\angle{BOC})\times \tan({\frac{1}{2}}\angle{COA})}}$ [ as $ {\displaystyle{\angle{AOB} + \angle{BOC} + \angle{COA} = {360}^{\circ}}}$ ]
= $ {\displaystyle{\frac{a}{2{p_1}}}\times{\frac{b}{2{p_2}}}\times{\frac{c}{2{p_3}}}}$
= $ {\displaystyle{\frac{abc}{8{p_1}{p_2}{p_3}}}}$
$ \Rightarrow \frac{a}{p_1} + \frac{b}{p_2} + \frac{c}{p_3} = \frac{abc}{4{p_1}{p_2}{p_3} } $ ( proved )

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
Menu
Trial
Whatsapp
magic-wandrockethighlight