Get inspired by the success stories of our students in IIT JAM 2021. Learn More 

Telescopic Continuity | ISI MStat 2015 PSB Problem 1

This problem is a simple application of the sequential definition of continuity from ISI MStat 2015 PSB Problem 1 based on Telescopic Continuity.

Problem- Telescopic Continuity

Let \(f: R \rightarrow R\) be a function which is continuous at 0 and \(f(0)=1\)
Also assume that \(f\) satisfies the following relation for all \(x\) :
$$
f(x)-f(\frac{x}{2})=\frac{3 x^{2}}{4}+x
$$ Find \(f(3)\).

Prerequisites

Solution

$$
f(3)-f(\frac{3}{2})=\frac{3 \times 3^{2}}{4}+3
$$

$$
f(\frac{3}{2})-f(\frac{\frac{3}{2}}{2})=\frac{3 \times \frac{3}{2}^{2}}{4}+\frac{3}{2}
$$

$$
f(\frac{3}{2^2})-f(\frac{\frac{3}{2^2}}{2})=\frac{3 \times \frac{3}{2^2}^{2}}{4}+\frac{3}{2^2}
$$

\( \cdots \)

$$
f(\frac{3}{2^n})-f(\frac{\frac{3}{2^n}}{2})=\frac{3 \times \frac{3}{2^n}^{2}}{4}+\frac{3}{2^n}
$$

Add them all up. That's the telescopic elegance.

$$
f(3)-f(\frac{3}{2^{n+1}})= \frac{3 \times 3^{2}}{4} \times \sum_{k = 0}^{n} \frac{1}{2^{2k}} + 3 \times \sum_{k = 0}^{n} \frac{1}{2^k} \rightarrow [*]
$$

Observe that \( a_n \to 0 \Rightarrow f(a_n) \to f(0) = 1\) since, \(f(x)\) is continuous at \(x=0\).

Hence take limit \( n \to \infty \) on \([*]\), and we get \( f(3) - f(0) = \frac{3 \times 3^{2}}{4} \times \frac{4}{3} + 3 \times 2 = 15 \).

Food for Thought

  • Find the general function from the given condition.
  • $$f(x)-f(\frac{x}{2})=g(x)$$ and g(x) is continuous, then prove that \(g(0) =0\).
  • What if \(g(x)\) is not continuous?

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com