Categories
Algebra Math Olympiad PRMO USA Math Olympiad

Value of Sum | PRMO – 2018 | Question 16

Try this beautiful Problem based on Value of Sum from PRMO 2018, Question 16.

Value of Sum – PRMO 2018, Question 16


What is the value of $\sum_{1 \leq i<j \leq 10 \atop i+j=\text { odd }}(i-j)-\sum_{1 \leq i<j \leq 10 \atop i+j=\text { even }}(i-j) ?$

  • $50$
  • $53$
  • $55$
  • $59$
  • $65$

Key Concepts


Odd-Even

Sum

integer

Check the Answer


Answer:$55$

PRMO-2018, Problem 16

Pre College Mathematics

Try with Hints


We have to find out the sum . Now substitite $i=1,2,3…9$ and observe the all odd-even cases……

Can you now finish the problem ……….

$i=1 \Rightarrow$$ 1+(2+4+6+8+10-3-5-7-9)$
$=1-4+10=7$
$i=2 \Rightarrow $$0 \times 2+(3+5+7+9-4-6-8-10)$
$=-4$

$i=3 \Rightarrow$$ 1 \times 3+(4+6+8+10-5-7-9)$
$=3-3+10=10$
$i=4 \Rightarrow$$ 0 \times 4+(5+7+9-6-8-10)=-3$
$i=5 \Rightarrow $$1 \times 5+(6+8+10-7-9)=5-2+10$
$=13$
$i=6 \Rightarrow$$ 0 \times 6+(7+9-8-10)=-2$
$i=7 \Rightarrow $$1 \times 7+(8+10-9)=7-1+10=16$
$i=8 \Rightarrow$$ 0 \times 8+(9-10)=-1$
$i=9 \Rightarrow$$ 1 \times 9+(10)=19$

Can you finish the problem……..

Therefore $ S =(7+10+13+16+19)$-$(4-3-2-1)$ =$55 $



Subscribe to Cheenta at Youtube


Categories
Math Olympiad PRMO USA Math Olympiad

Good numbers Problem | PRMO-2018 | Question 22

Try this beautiful good numbers problem from Number theory from PRMO 2018, Question 22.

Good numbers Problem – PRMO 2018, Question 22


A positive integer $k$ is said to be good if there exists a partition of ${1,2,3, \ldots, 20}$ into disjoint proper subsets such that the sum of the numbers in each subset of the partition is $k$. How many good numbers are there?

  • $4$
  • $6$
  • $8$
  • $10$
  • $2$

Key Concepts


Number theorm

good numbers

subset

Check the Answer


Answer:$6$

PRMO-2018, Problem 22

Pre College Mathematics

Try with Hints


What is good numbers ?

A good number is a number in which every digit is larger than the sum of digits of its right (all less significant bits than it). For example, 732 is a good number, $7>3+2$ and $3>2$ .

Given that $k$ is said to be good if there exists a partition of ${1,2,3, \ldots, 20}$ into disjoint proper subsets such that the sum of the numbers in each subset of the partition is $k$. Now at first we have to find out sum of these integers ${1,2,3, \ldots, 20}$. Later create some partitions such that two partitions be disjoint set and sum of the numbers of these partitions be good numbers

Can you now finish the problem ……….

Sum of numbers equals to $\frac{20 \times 21}{2}=210 \& 210=2 \times 3 \times 5 \times 7$

So $\mathrm{K}$ can be 21,30,35,47,70,105

Can you finish the problem……..

Case 1 :

$\mathrm{A}=\{1,2,3,4,5,16,17,18,19,20\}$, $\mathrm{B}=\{6,7,8,9,10,11,12,13,14,15\}$

Case 2 :

$A=\{20,19,18,13\}$, $B=\{17,16,15,12,10\}$, $C=\{1,2,3,4,5,6,7,8,9,11,14\}$

Case 3 :

$\mathrm{A}=\{20,10,12\}$, $\mathrm{B}=\{18,11,13\}$, $\mathrm{C}=\{16,15,9,2\}$, $\mathrm{D}=\{19,8,7,5,3\}$, $\mathrm{E}=\{1,4,6,14,17\}$

Case 4 :

$A=\{20,10\}, B=\{19,11\}$,$ C=\{18,12\}, D=\{17,13\}$,$ E=\{16,14\}$, $F=\{1,15,5\},$
$G=\{2,3,4,6,7,8\}$

Case 5 :

$A=\{20,15\}$, $B=\{19,16\}$, $C=\{18,17\}$, $D=\{14,13,8\}$, $E=\{12,11,10,2\},$
$F=\{1,3,4,5,6,7,9\}$

Case 6 :

$A=\{1,20\}$,$ B=\{2,19\}$, $C=\{3,18\} \ldots \ldots \ldots \ldots$, $J=\{10,11\}$

Therefore Good numbers equal to $6$

Subscribe to Cheenta at Youtube


Categories
Math Olympiad PRMO USA Math Olympiad

Polynomial Problem | PRMO-2018 | Question 30

Try this beautiful Polynomial Problem from Number theorm from PRMO 2018, Question 30.

Polynomial Problem – PRMO 2018, Question 30


Let $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{n} x^{n}$ be a polynomial in which $a_{i}$ is non-negative integer for each $\mathrm{i} \in{0,1,2,3, \ldots, \mathrm{n}} .$ If $\mathrm{P}(1)=4$ and $\mathrm{P}(5)=136,$ what is the value of $\mathrm{P}(3) ?$

  • $30$
  • $34$
  • $36$
  • $39$
  • $42$

Key Concepts


Number theorm

Polynomial

integer

Check the Answer


Answer:$34$

PRMO-2018, Problem 30

Pre College Mathematics

Try with Hints


Given that $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{n} x^{n}$ where $\mathrm{P}(1)=4$ and $\mathrm{P}(5)=136$. Now we have to find out $P(3)$.

Therefore if we put $x=1$ and $x=5$ then we will get two relations . Using these relations we can find out $a_0$ , $a_1$, $a_2$ .

Can you now finish the problem ……….

$a_{0}+a_{1}+a_{2}+\ldots \ldots+a_{n}=4$
$\Rightarrow a_{i} \leq 4$
$a_{0}+5 a_{1}+5^{2} a_{2}+\ldots+a 5^{n} a_{n}=136$
$\Rightarrow a_{0}=1+5 \lambda \Rightarrow a_{0}=1$

Can you finish the problem……..

Hence $5 a_{1}+5^{2} a_{2}+\ldots \ldots+5^{n} a_{n}=135$
$a_{1}+5 a_{2}+\ldots 5^{n-1} a_{n-1}=27$
$\Rightarrow a_{1}=5 \lambda+2 \Rightarrow a_{1}=2$
$\Rightarrow 5 a_{2}+\ldots .5^{n-1} a_{n-1}=25$
$a_{2}+5 a_{3}+\ldots .5^{n-2} a_{n-2}=5$
$\Rightarrow a_{2}=5 \lambda \Rightarrow a_{2}=0$
$a_{3}+5 a_{4}+\ldots \ldots \ldots+5^{n-3} a_{n-3}=1$
$a_{3}=1$
$\Rightarrow a_{4}+5 a_{5}+\ldots .+5^{n-4} a_{n-3}=0$
$a_{4}=a_{5}=\ldots . a_{n}=0$
Hence $P(n)=x^{3}+2 x+1$
$P(3)=34$

Subscribe to Cheenta at Youtube


Categories
Algebra Math Olympiad PRMO USA Math Olympiad

Digits Problem | PRMO – 2018 | Question 19

Try this beautiful Digits Problem from Number theorm from PRMO 2018, Question 19.

Digits Problem – PRMO 2018, Question 19


Let $N=6+66+666+\ldots \ldots+666 \ldots .66,$ where there are hundred 6 ‘s in the last term in the sum. How many times does the digit 7 occur in the number $N ?$

  • $30$
  • $33$
  • $36$
  • $39$
  • $42$

Key Concepts


Number theorm

Digits Problem

integer

Check the Answer


Answer:$33$

PRMO-2018, Problem 19

Pre College Mathematics

Try with Hints


Given that $\mathrm{N}=6+66+666+……. \underbrace{6666 …..66}_{100 \text { times }}$

If you notice then we can see there are so many large terms. but we have to find out the sum of the digits. but since the number of digits are large so we can not calculate so eassily . we have to find out a symmetry or arrange the number so that we can use any formula taht we can calculate so eassily. if we multiply \(\frac{6}{9}\) then it becomes $=\frac{6}{9}[9+99+\ldots \ldots \ldots \ldots+\underbrace{999 \ldots \ldots \ldots .99}_{100 \text { times }}]$

Can you now finish the problem ……….

$\mathrm{N}=\frac{6}{9}[9+99+\ldots \ldots \ldots \ldots+\underbrace{999 \ldots \ldots \ldots .99}_{100 \text { times }}]$
$=\frac{6}{9}\left[(10-1)+\left(10^{2}-1\right)+…….+\left(10^{100}-1\right)\right]$
$=\frac{6}{9}\left[\left(10+10^{2}+…..+10^{100}\right)-100\right]$

Can you finish the problem……..

$=\frac{6}{9}\left[\left(10^{2}+10^{3}+\ldots \ldots \ldots+10^{100}\right)-90\right]$
$=\frac{6}{9}\left(10^{2} \frac{\left(10^{99}-1\right)}{9}\right)-60$
$=\frac{200}{27}\left(10^{99}-1\right)-60$
$=\frac{200}{27}\underbrace{(999….99)}_{99 \text{times}}-60$
$=\frac{1}{3}\underbrace{(222…..200)}_{99 \mathrm{times}}-60$

$=\underbrace{740740 \ldots \ldots .7400-60}_{740 \text { comes } 33 \text { times }}$ $=\underbrace{740740 \ldots \ldots .740}_{32 \text { times }}+340$
$\Rightarrow 7$ comes 33 times



Subscribe to Cheenta at Youtube


Categories
Geometry Math Olympiad PRMO USA Math Olympiad

Area of the Trapezium | PRMO-2017 | Question 30

Try this beautiful Problem from Geometry based on Area of the Trapezium from PRMO 2017.

Area of the Trapezium – PRMO 2017, Problem 30


Consider the areas of the four triangles obtained by drawing the diagonals $\mathrm{AC}$ and $\mathrm{BD}$ of a trapezium ABCD. The product of these areas, taken two at time, are computed. If among the six products so obtained, two products are 1296 and 576 , determine the square root of the maximum possible area of the trapezium to the nearest integer.

  • $9$
  • $40$
  • $13$
  • $20$

Key Concepts


Geometry

Triangle

Trapezium

Check the Answer


Answer:$13$

PRMO-2017, Problem 30

Pre College Mathematics

Try with Hints


First hint

Let $x, y, z, w$ be areas of the four triangles as shown in figure.
then area of \(\triangle ADB\)= Area of \(\triangle ACB\)
$\Rightarrow x+y=x+w \Rightarrow y=w$

Also \(\frac{AE}{EC}\)=\(\frac{area of \triangle ADE}{area of \triangle DEF}\)=\(\frac{area of \triangle AEB}{area of \triangle BEC}\)
$\Rightarrow \frac{y}{z}=\frac{x}{w}=\frac{x}{y} \Rightarrow y^{2}=z x$
$\Rightarrow z, y, x$ are in G.P.

Can you now finish the problem ……….

Second Hint

Let $y=z r$ and $x=z r^{2},$ where $r \geq 1$ To make area of trapezium ABCD maximum, we take $z y=z^{2} r=576$
and $y w=z^{2} r^{2}=1296$
As $( z \leq y \leq x)$
Therefore $ \frac{z^{2} r^{2}}{z^{2} r}=\frac{1296}{576} \Rightarrow r=\frac{9}{4} \Rightarrow z=16$

Can you finish the problem……..

Final Step

Therefore area of trapezium $\mathrm{ABCD}$
$=x+y+z+w=z r^{2}+2 z r+z$
$=z(1+r)^{2}=16\left(1+\frac{9}{4}\right)^{2}=13^{2}$
Therefore Answer is $13 .$

Subscribe to Cheenta at Youtube


Categories
AMC 10 Geometry Math Olympiad USA Math Olympiad

Problem on Circle and Triangle | AMC 10A, 2016 | Problem 21

Try this beautiful problem from Geometry: Problem on Circle and Triangle

Problem on Circle and Triangle – AMC-10A, 2016- Question 21


Circles with centers $P, Q$ and $R,$ having radii 1,2 and 3 , respectively, lie on the same side of line $l$ and are tangent to $l$ at $P^{\prime}, Q^{\prime}$ and $R^{\prime}$ respectively, with $Q^{\prime}$ between $P^{\prime}$ and $R^{\prime}$. The circle with center $Q$ is externally tangent to each of the other two circles. What is the area of triangle $P Q R ?$

,

 

  • $0$
  • $\sqrt{6} / 3$
  • $1$
  • $\sqrt{6}-\sqrt{2}$
  • $\sqrt{6} / 2$

Key Concepts


Geometry

Circle

Triangle

Check the Answer


Answer: $\sqrt{6}-\sqrt{2}$

AMC-10A (2016) Problem 21

Pre College Mathematics

Try with Hints


First hint

We have to find out area of the Triangle PQR. But PQR is not a Standard Triangle that we can find out eassily. Join $PP^{\prime}$, $QQ^{\prime}$, $RR^{\prime}$. Now we can find out PQR such that $\left[P^{\prime} P Q R R^{\prime}\right]$ in two different ways: $\left[P^{\prime} P Q Q^{\prime}\right]+\left[Q^{\prime} Q R R^{\prime}\right]$ and $[P Q R]+\left[P^{\prime} P R R^{\prime}\right]$, so $\left[P^{\prime} P Q Q^{\prime}\right]+\left[Q^{\prime} Q R R^{\prime}\right]=[P Q R]+\left[P^{\prime} P R R^{\prime}\right]$

Can you now finish the problem ……….

Second Hint

$P^{\prime} Q^{\prime}=\sqrt{P Q^{2}-\left(Q Q^{\prime}-P P^{\prime}\right)^{2}}=\sqrt{9-1}=\sqrt{8}=2 \sqrt{2}$

$Q^{\prime} R^{\prime}=\sqrt{Q R^{2}-\left(R R^{\prime}-Q Q^{\prime}\right)^{2}}=\sqrt{5^{2}-1^{2}}=\sqrt{24}=2 \sqrt{6}$

$\left[P^{\prime} P Q Q^{\prime}\right]=\frac{P^{\prime} P+Q^{\prime} Q}{2} * 2 \sqrt{2}=\frac{1+2}{2} * 2 \sqrt{2}=3 \sqrt{2}$

$\left[Q^{\prime} Q R R^{\prime}\right]=5 \sqrt{6}$

$\left[P^{\prime} P R R^{\prime}\right]$ = $P^{\prime} R^{\prime}=P^{\prime} Q^{\prime}+Q^{\prime} R^{\prime}=2 \sqrt{2}+2 \sqrt{6}$

$\left[P^{\prime} P R R^{\prime}\right]=4 \sqrt{2}+4 \sqrt{6}$

$\left[P^{\prime} P Q Q^{\prime}\right]+\left[Q^{\prime} Q R R^{\prime}\right]=[P Q R]+\left[P^{\prime} P R R^{\prime}\right]$

$3 \sqrt{2}+5 \sqrt{6}=4 \sqrt{2}+4 \sqrt{6}+[P Q R]$

$[P Q R]=\sqrt{6}-\sqrt{2}$

Subscribe to Cheenta at Youtube


Categories
Algebra AMC 10 Math Olympiad USA Math Olympiad

Least Possible Value Problem | AMC-10A, 2019 | Quesstion19

Contents
 [hide]

    Try this beautiful problem from Algebra based on Least Possible Value.

    Least Possible Value – AMC-10A, 2019- Problem 19


    What is the least possible value of \(((x+1)(x+2)(x+3)(x+4)+2019)\)

    where (x) is a real number?

    • \((2024)\)
    • \((2018)\)
    • \((2020)\)

    Key Concepts


    Algebra

    quadratic equation

    least value

    Check the Answer


    Answer: \((2018)\)

    AMC-10A (2019) Problem 19

    Pre College Mathematics

    Try with Hints


    To find out the least positive value of \((x+1)(x+2)(x+3)(x+4)+2019\), at first we have to expand the expression .\(((x+1)(x+2)(x+3)(x+4)+2019)\) \(\Rightarrow (x+1)(x+4)(x+2)(x+3)+2019=(x^2+5x+4)(x^2+5x+6)+2019)\)

    Let us take \(((x^2+5x+5=m))\)

    then the above expression becomes \(((m-1)(m+1)+2019)\) \(\Rightarrow m^2-1+2019\) \(\Rightarrow m^2+2018\)

    Can you now finish the problem ……….

    Clearly in \((m^2+2018)…….(m^2)\) is positive ( squares of any number is non-negative) and least value is 0

    can you finish the problem……..

    Therefore minimum value of \(m^2+2108\) is \(2018\) since \(m^2 \geq 0\) for all m belongs to real .

    Subscribe to Cheenta at Youtube


    Categories
    AMC 10 Geometry Math Olympiad USA Math Olympiad

    Graph Coordinates | AMC 10A, 2015 | Question 12

    Try this beautiful Problem on Graph Coordinates from coordinate geometry from AMC 10A, 2015.

    Graph Coordinates – AMC-10A, 2015- Problem 12


    Points $(\sqrt{\pi}, a)$ and $(\sqrt{\pi}, b)$ are distinct points on the graph of $y^{2}+x^{4}=2 x^{2} y+1 .$ What is $|a-b| ?$

    ,

    • $0$
    • $1$
    • $2$
    • $3$
    • \(4\)

    Key Concepts


    Co-ordinate geometry

    graph

    Distance Formula

    Check the Answer


    Answer: $2$

    AMC-10A (2015) Problem 12

    Pre College Mathematics

    Try with Hints


    The given points are $(\sqrt{\pi}, a)$ and $(\sqrt{\pi}, b)$ which are satisfying the equation $y^{2}+x^{4}=2 x^{2} y+1$.

    So we can write $y^{2}+\sqrt{\pi}^{4}=2 \sqrt{\pi}^{2} y+1$

    Can you now finish the problem ……….

    Therefore

    $y^{2}+\pi^{2}=2 \pi y+1$
    $y^{2}-2 \pi y+\pi^{2}=1$
    $(y-\pi)^{2}=1$
    $y-\pi=\pm 1$
    $y=\pi+1$
    $y=\pi-1$

    can you finish the problem……..

    There are only two solutions to the equation, so one of them is the value of $a$ and the other is $b$. our requirement is $|a-b|$ so between a and b which is greater is not importent…………

    So, $|(\pi+1)-(\pi-1)|=2$

    Subscribe to Cheenta at Youtube


    Categories
    Algebra Math Olympiad PRMO USA Math Olympiad

    Positive Integer | PRMO-2017 | Question 1

    Try this beautiful Positive Integer Problem from Algebra from PRMO 2017, Question 1.

    Positive Integer – PRMO 2017, Question 1


    How many positive integers less than 1000 have the property that the sum of the digits of each such number is divisible by 7 and the number itself is divisible by $3 ?$

    • $9$
    • $7$
    • $28$

    Key Concepts


    Algebra

    Equation

    multiplication

    Check the Answer


    Answer:$28$

    PRMO-2017, Problem 1

    Pre College Mathematics

    Try with Hints


    Let $n$ be the positive integer less than 1000 and $s$ be the sum of its digits, then $3 \mid n$ and $7 \mid s$
    $3|n \Rightarrow 3| s$
    therefore$21| s$

    Can you now finish the problem ……….

    Also $n<1000 \Rightarrow s \leq 27$
    therefore $\mathrm{s}=21$
    Clearly, n must be a 3 digit number Let $x_{1}, x_{2}, x_{3}$ be the digits, then $x_{1}+x_{2}+x_{3}=21$
    where $1 \leq x_{1} \leq 9,0 \leq x_{2}, x_{3} \leq 9$
    $\Rightarrow x_{2}+x_{3}=21-x_{1} \leq 18$
    $\Rightarrow x_{1} \geq 3$

    Can you finish the problem……..

    For $x_{1}=3,4, \ldots ., 9,$ the equation (1) has $1,2,3, \ldots ., 7$ solutions
    therefore total possible solution of equation (1)

    =$1+2+\ldots+7=\frac{7 \times 8}{2}=28$

    Subscribe to Cheenta at Youtube


    Categories
    AMC 10 Geometry Math Olympiad USA Math Olympiad

    Arithmetic sequence | AMC 10A, 2015 | Problem 7

    Try this beautiful problem from Algebra: Arithmetic sequence from AMC 10A, 2015, Problem.

    Arithmetic sequence – AMC-10A, 2015- Problem 7


    How many terms are in the arithmetic sequence $13$, $16$, $19$, $\dotsc$, $70$, $73$?

    • \(20\)
    • \(21\)
    • \(24\)
    • \(60\)
    • \(61\)

    Key Concepts


    Algebra

    Arithmetic sequence

    Check the Answer


    Answer: \(21\)

    AMC-10A (2015) Problem 7

    Pre College Mathematics

    Try with Hints


    The given terms are $13$, $16$, $19$, $\dotsc$, $70$, $73$. We have to find out the numbers of terms…..

    If you look very carefully then the distance between two digits is \(3\).Therefore this is an Arithmetic Progression where the first term is \(13\) and common difference is \(3\)

    Can you now finish the problem ……….

    $a+(n-1) d \Longrightarrow 13+(n-1) 3=73$

    \(\Rightarrow n=21\)

    The number of terms=\(21\)

    Subscribe to Cheenta at Youtube