Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Sum of the digits | AMC-10A, 2007 | Problem 25

Try this beautiful problem from Algebra based on Sum of the digits.

Sum of the digits - AMC-10A, 2007- Problem 25


For each positive integer $n$ , let $S(n)$ denote the sum of the digits of $n.$ For how many values of $n$ is \(n+s(n)+s(s(n))=2007\)

  • \(1\)
  • \(2\)
  • \(3\)
  • \(4\)

Key Concepts


algebra

function

multiplication

Check the Answer


Answer: \(4\)

AMC-10A (2007) Problem 25

Pre College Mathematics

Try with Hints


Let \(P(n)=(n+s(n)+s(s(n))=2007)\) tnen obviously \(n<2007\)

For \(n\)=\(1999\).the sum becoms \(28+10)=38\)

so we may say that the minimum bound is \(1969\)

Now we want to break it in 3 parts .....

Case 1:\(n \geq 2000\),

Case 2:\(n \leq 2000\) (\(n = 19xy,x+y<10\)

Case 3:\(n \leq 2000\) (\(n = 19xy,x+y \geq 10\)

Can you now finish the problem ..........

Case 1:\(n \geq 2000\),

Then \(P(n)=(n+s(n)+s(s(n))=2007)\) gives \(n=2001\)

Case 2:\(n \leq 2000\) (\(n = 19xy,x+y<10\)

Then \(P(n)=(n+s(n)+s(s(n))=2007)\) gives \(4x+y=32\) which satisfying the constraints \(x = 8\), \(y = 0\).

Case 3:\(n \leq 2000) ((n = 19xy,x+y \geq 10\) gives \(4x+y=35\) which satisfying the constraints \(x = 7\), \(y = 7\) and \(x = 8\), \(y = 3\).

can you finish the problem........

Therefore The solutions are thus \(1977, 1980, 1983, 2001\)

Subscribe to Cheenta at Youtube


Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com