Sum Of 1'S C.M.I UG-2019 Entrance

Join Trial or Access Free Resources

Sum of 1's: Algebra Problem

Find the sum: 1+111+11111+1111111+…..1….111(2k+1) ones 

Useful points:

C.M.I UG-2019 Entrance Examination

3.5 out of 10

Challenges and Thrills of Pre-College Mathematics 

Try with Hints ...

Can you somehow manipulate the expression in geometric progression?

\(\frac{1}{9}(9+99+999+9999.........)\)

Now, can u transfer it into G.P series?

 Ok let's see,

$\frac{1}{9}\left[\left(10^{1}-1\right)+\left(10^{2}-1\right)+\ldots \ldots\right]$ upto 2k+1 terms

= $\frac{1}{9}\left[\left(10+10^{2}+10^{3}+\ldots \ldots\right)\\-(1+1+1+1 \ldots \ldots . .)\right]$

Now can u see the G.P Series, with first term 10 and common ratio 10?

 Ok let's see,

$\frac{1}{9}\left[\left(10^{1}-1\right)+\left(10^{2}-1\right)+\ldots \ldots \right]$ upto 2k+1 terms

= $\frac{1}{9}\left[\left(10+10^{2}+10^{3}+\ldots \ldots\right)\\-(1+1+1+1 \ldots \ldots . .)\right]$

Subscribe to Cheenta at YouTube

More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram