How Cheenta works to ensure student success?
Explore the Back-Story

# Understand the problem

[/et_pb_text][et_pb_text _builder_version="3.27" text_font="Raleway||||||||" background_color="#f4f4f4" box_shadow_style="preset2" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" hover_enabled="0" _i="1" _address="0.0.0.1"]The set of nilpotent matrices in $$M_3(R)$$ spans $$M_3(R)$$ considered as an R-vector space (a matrix A is said to be nilpotent if there exists n ∈ N such that $$A^n = 0)$$. [/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25" _i="1" _address="0.1"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||" _i="0" _address="0.1.0"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="3.27" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px" hover_enabled="0" _i="0" _address="0.1.0.0"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="3.27" _i="0" _address="0.1.0.0.0" hover_enabled="0"]TIFR 2018 Part A, Problem 15 [/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="3.27" _i="1" _address="0.1.0.0.1" open="off" hover_enabled="0"]LINEAR  ALGEBRA [/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="3.27" _i="2" _address="0.1.0.0.2" open="off" hover_enabled="0"]Medium [/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="3.27" _i="3" _address="0.1.0.0.3" open="off" hover_enabled="0"]Linear Algebra, Hoffman and Kunze [/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.23.3" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" _i="1" _address="0.1.0.1"]

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="3.27" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff" hover_enabled="0" _i="2" _address="0.1.0.2"][et_pb_tab title="Hint 0" _builder_version="3.22.4" _i="0" _address="0.1.0.2.0"]Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="3.27" _i="1" _address="0.1.0.2.1" hover_enabled="0"]
Let’s first try an easier problem first :
• Whether there exists a and b such that I = a N + b M,where N and M are nilpotent matrices and a,b are real numbers ?
• To use the given definition to prove or disprove this we need to take powers and things will become too messy for larger n though here it is 3.[We have to take only $$A^3=0$$ it is a small exercise to verify]
[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.27" _i="2" _address="0.1.0.2.2" hover_enabled="0"]
• So let us recapitulate some properties of nilpotent matrices: They are the matrices which has only eigenvalue 0. How to use this?
• We wish to have some linear operator acting on the right side for the RHS is a linear combination and the natural choice is Trace.
• Trace of a nilpotent matrix is 0.
[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.27" _i="3" _address="0.1.0.2.3" hover_enabled="0"]
• Now assume that I is a finite linear combination of Nilpotent matrices and then take Trace Operator on both sides.
• Thus LHS has trace n and RHS has trace 0.(Contradiction)
• So the answer is False.
[/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="3.27" _i="4" _address="0.1.0.2.4" hover_enabled="0"]
Food for Thought:
• Observe that the order of the matrices is not at all a big issue here!
• Does span of the nilpotent matrices contain all the matrices with trace 0?
• Hint:Try to find all the 2x2 nilpotent matrices and check the above statement out!