Understand the problem

The set of nilpotent matrices in \(M_3(R)\) spans \(M_3(R)\) considered as an R-vector space (a matrix A is said to be nilpotent if there exists n ∈ N such that \(A^n = 0)\).
Source of the problem
TIFR 2018 Part A, Problem 15
Topic
LINEAR  ALGEBRA
Difficulty Level
Medium
Suggested Book
Linear Algebra, Hoffman and Kunze

Start with hints

Do you really need a hint? Try it first!

Let’s first try an easier problem first :
  • Whether there exists a and b such that I = a N + b M,where N and M are nilpotent matrices and a,b are real numbers ?
  • To use the given definition to prove or disprove this we need to take powers and things will become too messy for larger n though here it is 3.[We have to take only \(A^3=0\) it is a small exercise to verify]
  • So let us recapitulate some properties of nilpotent matrices: They are the matrices which has only eigenvalue 0. How to use this?
  • We wish to have some linear operator acting on the right side for the RHS is a linear combination and the natural choice is Trace.
  • Trace of a nilpotent matrix is 0.
  • Now assume that I is a finite linear combination of Nilpotent matrices and then take Trace Operator on both sides.
  • Thus LHS has trace n and RHS has trace 0.(Contradiction)
  • So the answer is False.
Food for Thought:
  • Observe that the order of the matrices is not at all a big issue here!
  • Does span of the nilpotent matrices contain all the matrices with trace 0?
  • Hint:Try to find all the 2×2 nilpotent matrices and check the above statement out!

Watch the video

Connected Program at Cheenta

College Mathematics Program

The higher mathematics program caters to advanced college and university students. It is useful for I.S.I. M.Math Entrance, GRE Math Subject Test, TIFR Ph.D. Entrance, I.I.T. JAM. The program is problem driven. We work with candidates who have a deep love for mathematics. This program is also useful for adults continuing who wish to rediscover the world of mathematics.

Similar Problems

Problem on Inequality | ISI – MSQMS – B, 2018 | Problem 2a

Try this problem from ISI MSQMS 2018 which involves the concept of Inequality. You can use the sequential hints provided to solve the problem.

Data, Determinant and Simplex

This problem is a beautiful problem connecting linear algebra, geometry and data. Go ahead and dwelve into the glorious connection.

Problem on Integral Inequality | ISI – MSQMS – B, 2015

Try this problem from ISI MSQMS 2015 which involves the concept of Integral Inequality and real analysis. You can use the sequential hints provided to solve the problem.

Inequality Problem From ISI – MSQMS – B, 2017 | Problem 3a

Try this problem from ISI MSQMS 2017 which involves the concept of Inequality. You can use the sequential hints provided to solve the problem.

Problem on Natural Numbers | TIFR B 2010 | Problem 4

Try this problem of TIFR GS-2010 using your concepts of number theory and congruence based on natural numbers. You may use the sequential hints provided.

Definite Integral Problem | ISI 2018 | MSQMS- A | Problem 22

Try this problem from ISI-MSQMS 2018 which involves the concept of Real numbers, sequence and series and Definite integral. You can use the sequential hints

Inequality Problem | ISI – MSQMS 2018 | Part B | Problem 4

Try this problem from ISI MSQMS 2018 which involves the concept of Inequality and Combinatorics. You can use the sequential hints provided.

Problem on Inequality | ISI – MSQMS – B, 2018 | Problem 4b

Try this problem from ISI MSQMS 2018 which involves the concept of Inequality. You can use the sequential hints provided to solve the problem.

Positive Integers Problem | TIFR B 201O | Problem 12

Try this problem of TIFR GS-2010 using your concepts of number theory based on Positive Integers. You may use the sequential hints provided.

CYCLIC GROUP Problem | TIFR 201O | PART A | PROBLEM 1

Try this problem from TIFR GS-2010 which involves the concept of cyclic group. You can use the sequential hints provided to solve the problem.