INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More

# SMO(senior)-2014 Problem 2 Number Theory

[et_pb_section fb_built="1" _builder_version="3.22.4" fb_built="1" _i="0" _address="0"][et_pb_row _builder_version="3.25" _i="0" _address="0.0"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||" _i="0" _address="0.0.0"][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_padding="20px|20px|20px|20px" _i="0" _address="0.0.0.0"]

# Understand the problem

[/et_pb_text][et_pb_text _builder_version="3.27.4" text_font="Raleway||||||||" background_color="#f4f4f4" box_shadow_style="preset2" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" _i="1" _address="0.0.0.1"]Find, with justification, all positive real numbers   $a,b,c$   satisfying the system of equations:    $$a\sqrt{b}=a+c,b\sqrt{c}=b+a,c\sqrt{a}=c+b.$$[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.27.4" hover_enabled="0" _i="1" _address="0.1"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||" _i="0" _address="0.1.0"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="3.27.4" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px" hover_enabled="0" _i="0" _address="0.1.0.0"][et_pb_accordion_item title="Source of the problem" open="off" _builder_version="3.27" hover_enabled="0" _i="0" _address="0.1.0.0.0"]SMO (senior)-2014 stage 2 problem 2

[/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="3.27" hover_enabled="0" _i="1" _address="0.1.0.0.1" open="on"]Number Theory[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="3.27.4" hover_enabled="0" _i="2" _address="0.1.0.0.2" open="off"]Easy [/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="3.27" hover_enabled="0" _i="3" _address="0.1.0.0.3" open="off"]Excursion in Mathematics

[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" _i="1" _address="0.1.0.1"]

# Start with hints

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="3.27.4" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff" hover_enabled="0" _i="2" _address="0.1.0.2"][et_pb_tab title="Hint 0" _builder_version="3.27" hover_enabled="0" _i="0" _address="0.1.0.2.0"]Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="3.27.4" hover_enabled="0" _i="1" _address="0.1.0.2.1"]Given all three relations are cyclic and symmetric . So without loss of generality it can be assumed that $a \geq b \geq c >0$ .     Then proceed .               [ Note $(0, 0, 0)$ can't be a solution since $a , b , c$ are positive reals .] [/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.27.4" hover_enabled="0" _i="2" _address="0.1.0.2.2"]So $a \sqrt b = a + c \Rightarrow a(\sqrt b - 1) = c \ [and \ we \ have \ a \geq c] \Rightarrow ( \sqrt b - 1 ) \leq 1 \Rightarrow b \leq 4$[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.27.4" hover_enabled="0" _i="3" _address="0.1.0.2.3"]Similarly $b \sqrt c = b + a \Rightarrow b(\sqrt c - 1) = a \ [and \ we \ have \ a \geq b ] \Rightarrow \sqrt c - 1 \geq 1 \Rightarrow c \geq 4$[/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="3.27.4" hover_enabled="0" _i="4" _address="0.1.0.2.4"]

Till now we have $b \leq 4 \ and \ c \geq 4$ , but we assumed that $b \geq c$ . So it is clear that $b = c =4$  $\Rightarrow a = 4$ also. So the only triplet $(a , b , c)$ is $(4,4 ,4)$ .  [/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" _i="3" _address="0.1.0.3"]

# Connected Program at Cheenta

[/et_pb_text][et_pb_blurb title="Math Olympiad Program" url="https://www.cheenta.com/matholympiad/" url_new_window="on" image="https://www.cheenta.com/wp-content/uploads/2018/03/matholympiad.png" _builder_version="3.23.3" header_font="||||||||" header_text_color="#e02b20" header_font_size="48px" link_option_url="https://www.cheenta.com/matholympiad/" link_option_url_new_window="on" _i="4" _address="0.1.0.4"]

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.[/et_pb_blurb][et_pb_button button_url="https://www.cheenta.com/matholympiad/" url_new_window="on" button_text="Learn More" button_alignment="center" _builder_version="3.23.3" custom_button="on" button_bg_color="#0c71c3" button_border_color="#0c71c3" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3" background_layout="dark" _i="5" _address="0.1.0.5"][/et_pb_button][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" _i="6" _address="0.1.0.6"]

# Similar Problems

[/et_pb_text][et_pb_post_slider include_categories="9" _builder_version="3.22.4" _i="7" _address="0.1.0.7"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3" _i="8" _address="0.1.0.8"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]

This site uses Akismet to reduce spam. Learn how your comment data is processed.

### Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
HALL OF FAMESUPER STARSBOSE OLYMPIADBLOG
CAREERTEAM
support@cheenta.com