What is the NO-SHORTCUT approach for learning great Mathematics?
Learn More

June 22, 2020

Side Length of Rectangle | AMC-10A, 2009 | Problem 17

Try this beautiful problem from Geometry based on Side Length of Rectangle.

Side Length of Rectangle - AMC-10A, 2009- Problem 17


Rectangle $A B C D$ has $A B=4$ and $B C=3 .$ Segment $E F$ is constructed through $B$ so that $E F$ isperpendicular to $D B$, and $A$ and $C$ lie on $D E$ and $D F$, respectively. What is $E F$ ?

  • $9$
  • $10$
  • $\frac{125}{12}$
  • \(\frac{103}{9}\)
  • \(12\)

Key Concepts


Triangle

Rectangle

Geometry

Check the Answer


Answer: $\frac{125}{12}$

AMC-10A (2009) Problem 10

Pre College Mathematics

Try with Hints


Finding Side Length of Rectangle

We have to find out the length of \(EF\)

Now $BD$ is the altitude from $B$ to $EF$, we can use the equation $BD^2 = EB\cdot BF$. ( as \(\triangle BDE \sim \triangle BDF\)).so we have to find out \(BE\) and \(BF\)

Can you now finish the problem ..........

Problem figure

Now Clearly, $\triangle BDE \sim \triangle DCB$. Because of this, $\frac{A B}{C B}=\frac{E B}{D B}$. From the given information and the Pythagorean theorem, $A B=4, C B=3$, and $D B=5 .$ Solving gives $E B=20 / 3$
We can use the above formula to solve for $B F . B D^{2}=20 / 3 \cdot B F$. Solve to obtain $B F=15 / 4$

can you finish the problem........

Problem figure

Therefore $E F=E B+B F=\frac{20}{3}+\frac{15}{4}=\frac{80+45}{12}$

Subscribe to Cheenta at Youtube


One comment on “Side Length of Rectangle | AMC-10A, 2009 | Problem 17”

  1. This problem can be done using coordinate geometry by using convenient coordinate system. Let us consider $D$ to be the origin. Then by your diagram it follows that the coordinate of $A,B$ and $C$ are respectively $(-0,-3),(4,-3)$ and $(4,0).$ Then the equation of the line joining $B$ and $D$ is $3x+4y=0.$ So the equation of the line $L$ passing through $B$ and perpendicular to $BD$ is given by $4x - 3y = 25.$ So coordinate of $F$ and $E$ can be found by the point of intersections of $L$ with $X$-axis and the point of intersection of $L$ with $Y$-axis respectively. Therefore the coordinate of $E$ and $F$ are respectively $\left (0, -\frac {25} {3} \right)$ and $\left (\frac {25} {4} , 0 \right ).$ So the length of $EF$ is $$\sqrt {\left (-\frac {25} {4} \right )^2 + \left (- \frac {25} {3} \right )^2} = \frac {125} {12}.$$

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com