INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More

Contents

[hide]

Try this beautiful problem from Geometry based on Side Length of Rectangle.

Rectangle $A B C D$ has $A B=4$ and $B C=3 .$ Segment $E F$ is constructed through $B$ so that $E F$ isperpendicular to $D B$, and $A$ and $C$ lie on $D E$ and $D F$, respectively. What is $E F$ ?

- $9$
- $10$
- $\frac{125}{12}$
- \(\frac{103}{9}\)
- \(12\)

Triangle

Rectangle

Geometry

But try the problem first...

Answer: $\frac{125}{12}$

Source

Suggested Reading

AMC-10A (2009) Problem 10

Pre College Mathematics

First hint

We have to find out the length of \(EF\)

Now $BD$ is the altitude from $B$ to $EF$, we can use the equation $BD^2 = EB\cdot BF$. ( as \(\triangle BDE \sim \triangle BDF\)).so we have to find out \(BE\) and \(BF\)

Can you now finish the problem ..........

Second Hint

Now Clearly, $\triangle BDE \sim \triangle DCB$. Because of this, $\frac{A B}{C B}=\frac{E B}{D B}$. From the given information and the Pythagorean theorem, $A B=4, C B=3$, and $D B=5 .$ Solving gives $E B=20 / 3$

We can use the above formula to solve for $B F . B D^{2}=20 / 3 \cdot B F$. Solve to obtain $B F=15 / 4$

can you finish the problem........

Final Step

Therefore $E F=E B+B F=\frac{20}{3}+\frac{15}{4}=\frac{80+45}{12}$

- https://www.cheenta.com/problem-from-probability-amc-8-2004problem-no-21/
- https://www.youtube.com/watch?v=VLyrlx2DWdA&t=15s

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIAL
This problem can be done using coordinate geometry by using convenient coordinate system. Let us consider $D$ to be the origin. Then by your diagram it follows that the coordinate of $A,B$ and $C$ are respectively $(-0,-3),(4,-3)$ and $(4,0).$ Then the equation of the line joining $B$ and $D$ is $3x+4y=0.$ So the equation of the line $L$ passing through $B$ and perpendicular to $BD$ is given by $4x - 3y = 25.$ So coordinate of $F$ and $E$ can be found by the point of intersections of $L$ with $X$-axis and the point of intersection of $L$ with $Y$-axis respectively. Therefore the coordinate of $E$ and $F$ are respectively $\left (0, -\frac {25} {3} \right)$ and $\left (\frac {25} {4} , 0 \right ).$ So the length of $EF$ is $$\sqrt {\left (-\frac {25} {4} \right )^2 + \left (- \frac {25} {3} \right )^2} = \frac {125} {12}.$$