How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?

# Side Length of Rectangle | AMC-10A, 2009 | Problem 17

Try this beautiful problem from Geometry based on Side Length of Rectangle.

## Side Length of Rectangle - AMC-10A, 2009- Problem 17

Rectangle $A B C D$ has $A B=4$ and $B C=3 .$ Segment $E F$ is constructed through $B$ so that $E F$ isperpendicular to $D B$, and $A$ and $C$ lie on $D E$ and $D F$, respectively. What is $E F$ ?

• $9$
• $10$
• $\frac{125}{12}$
• $\frac{103}{9}$
• $12$

### Key Concepts

Triangle

Rectangle

Geometry

Answer: $\frac{125}{12}$

AMC-10A (2009) Problem 10

Pre College Mathematics

## Try with Hints

We have to find out the length of $EF$

Now $BD$ is the altitude from $B$ to $EF$, we can use the equation $BD^2 = EB\cdot BF$. ( as $\triangle BDE \sim \triangle BDF$).so we have to find out $BE$ and $BF$

Can you now finish the problem ..........

Now Clearly, $\triangle BDE \sim \triangle DCB$. Because of this, $\frac{A B}{C B}=\frac{E B}{D B}$. From the given information and the Pythagorean theorem, $A B=4, C B=3$, and $D B=5 .$ Solving gives $E B=20 / 3$
We can use the above formula to solve for $B F . B D^{2}=20 / 3 \cdot B F$. Solve to obtain $B F=15 / 4$

can you finish the problem........

Therefore $E F=E B+B F=\frac{20}{3}+\frac{15}{4}=\frac{80+45}{12}$