INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

March 1, 2020

Series and Trigonometry | ISI B.Stat Entrance 2009

Problem - Series and Trigonometry (ISI B.Stat Entrance)


We are going to discuss about Series and Trigonometry from I.S.I. B.Stat Entrance Objective Problem (2009).

Given that $k(1+2+3++...+n)= (1^2+2^2+...+n^2)$ find $cos^{-1}\frac{2n-3k}{2}$.

  • $\frac{\pi}{3}$
  • $\frac{\pi}{2}$
  • $\frac{\pi}{6}$
  • $\frac{4\pi}{3}$, $\frac{2\pi}{3}$

Key Concepts


Series

Trigonometry

Angles

Check the Answer


Answer: $\frac{4\pi}{3}$, $\frac{2\pi}{3}$

I.S.I. B.Stat Entrance Objective Problem (2009)

Challenges and Thrills of Pre-College Mathematics by University Press

Try with Hints


First hint

$(1^2+2^2+...+n^2)=\frac{n(n+1)(2n+1)}{6}$

$(1+2+...+n)=\frac{n(n+1)}{2}$

Second Hint

$\frac{kn(n+1)}{2}=\frac{n(n+1)(2n+1)}{6}$

then k=$\frac{2n+1}{3}$

Final Step

$cos^{-1}(\frac{2n-3(\frac{2n+1}{3})}{2})$

$=cos^{-1}(\frac{-1}{2})$

$=\frac{4\pi}{3}, \frac{2\pi}{3}$

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
enter