Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Series and Trigonometry | ISI B.Stat Entrance 2009

Problem - Series and Trigonometry (ISI B.Stat Entrance)


We are going to discuss about Series and Trigonometry from I.S.I. B.Stat Entrance Objective Problem (2009).

Given that $k(1+2+3++...+n)= (1^2+2^2+...+n^2)$ find $cos^{-1}\frac{2n-3k}{2}$.

  • $\frac{\pi}{3}$
  • $\frac{\pi}{2}$
  • $\frac{\pi}{6}$
  • $\frac{4\pi}{3}$, $\frac{2\pi}{3}$

Key Concepts


Series

Trigonometry

Angles

Check the Answer


Answer: $\frac{4\pi}{3}$, $\frac{2\pi}{3}$

I.S.I. B.Stat Entrance Objective Problem (2009)

Challenges and Thrills of Pre-College Mathematics by University Press

Try with Hints


First hint

$(1^2+2^2+...+n^2)=\frac{n(n+1)(2n+1)}{6}$

$(1+2+...+n)=\frac{n(n+1)}{2}$

Second Hint

$\frac{kn(n+1)}{2}=\frac{n(n+1)(2n+1)}{6}$

then k=$\frac{2n+1}{3}$

Final Step

$cos^{-1}(\frac{2n-3(\frac{2n+1}{3})}{2})$

$=cos^{-1}(\frac{-1}{2})$

$=\frac{4\pi}{3}, \frac{2\pi}{3}$

Subscribe to Cheenta at Youtube


Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com