Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2007 based on Sequence and Integers.

Sequence and Integers – AIME I, 2007

A sequence is defined over non negetive integral indexes in the following way \(a_0=a_1=3\), \( a_{n+1}a_{n-1}=a_n^{2}+2007\), find the greatest integer that does not exceed \(\frac{a_{2006}^{2}+a_{2007}^{2}}{a_{2006}a_{2007}}\)

  • is 107
  • is 224
  • is 840
  • cannot be determined from the given information

Key Concepts




Check the Answer

But try the problem first…

Answer: is 224.

Suggested Reading

AIME I, 2007, Question 14

Elementary Number Theory by David Burton

Try with Hints

First hint

\(a_{n+1}a_{n-1}\)=\(a_{n}^{2}+2007\) then \(a_{n-1}^{2} +2007 =a_{n}a_{n-2}\) adding these \(\frac{a_{n-1}+a_{n+1}}{a_{n}}\)=\(\frac{a_{n}+a_{n-2}}{a_{n-1}}\), let \(b_{j}\)=\(\frac{a_{j}}{a_{j-1}}\) then \(b_{n+1} + \frac{1}{b_{n}}\)=\(b_{n}+\frac{1}{b_{n-1}}\) then \(b_{2007} + \frac{1}{b_{2006}}\)=\(b_{3}+\frac{1}{b_{2}}\)=225

Second Hint

here \(\frac{a_{2007}a_{2005}}{a_{2006}a_{2005}}\)=\(\frac{a_{2006}^{2}+2007}{a_{2006}a_{2005}}\) then \(b_{2007}\)=\(\frac{a_{2007}}{a_{2006}}\)=\(\frac{a_{2006}^{2}+2007}{a_{2006}a_{2005}}\)\( \gt \)\(\frac{a_{2006}}{a_{2005}}\)=\(b_{2006}\)

Final Step

then \(b_{2007}+\frac{1}{b_{2007}} \lt b_{2007}+\frac{1}{b_{2006}}\)=225 which is small less such that all \(b_{j}\) s are greater than 1 then \(\frac{a_{2006}^{2}+ a_{2007}^{2}}{a_{2006}a_{2007}}\)=\(b_{2007}+\frac{1}{b_{2007}}\)=224.

Subscribe to Cheenta at Youtube