How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Sequence and Integers | AIME I, 2007 | Question 14

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2007 based on Sequence and Integers.

Sequence and Integers - AIME I, 2007

A sequence is defined over non negetive integral indexes in the following way \(a_0=a_1=3\), \( a_{n+1}a_{n-1}=a_n^{2}+2007\), find the greatest integer that does not exceed \(\frac{a_{2006}^{2}+a_{2007}^{2}}{a_{2006}a_{2007}}\)

  • is 107
  • is 224
  • is 840
  • cannot be determined from the given information

Key Concepts




Check the Answer

Answer: is 224.

AIME I, 2007, Question 14

Elementary Number Theory by David Burton

Try with Hints

First hint

\(a_{n+1}a_{n-1}\)=\(a_{n}^{2}+2007\) then \(a_{n-1}^{2} +2007 =a_{n}a_{n-2}\) adding these \(\frac{a_{n-1}+a_{n+1}}{a_{n}}\)=\(\frac{a_{n}+a_{n-2}}{a_{n-1}}\), let \(b_{j}\)=\(\frac{a_{j}}{a_{j-1}}\) then \(b_{n+1} + \frac{1}{b_{n}}\)=\(b_{n}+\frac{1}{b_{n-1}}\) then \(b_{2007} + \frac{1}{b_{2006}}\)=\(b_{3}+\frac{1}{b_{2}}\)=225

Second Hint

here \(\frac{a_{2007}a_{2005}}{a_{2006}a_{2005}}\)=\(\frac{a_{2006}^{2}+2007}{a_{2006}a_{2005}}\) then \(b_{2007}\)=\(\frac{a_{2007}}{a_{2006}}\)=\(\frac{a_{2006}^{2}+2007}{a_{2006}a_{2005}}\)\( \gt \)\(\frac{a_{2006}}{a_{2005}}\)=\(b_{2006}\)

Final Step

then \(b_{2007}+\frac{1}{b_{2007}} \lt b_{2007}+\frac{1}{b_{2006}}\)=225 which is small less such that all \(b_{j}\) s are greater than 1 then \(\frac{a_{2006}^{2}+ a_{2007}^{2}}{a_{2006}a_{2007}}\)=\(b_{2007}+\frac{1}{b_{2007}}\)=224.

Subscribe to Cheenta at Youtube

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.