Understand the problem

Given a circle \Gamma, let P be a point in its interior, and let l be a line passing through P.  Construct with proof using a ruler and compass, all circles which pass through P, are tangent to \Gamma, and whose centres lie on l.

Source of the problem

RMO 2019 Maharashtra and Goa region

Topic
Geometry
Difficulty Level

Easy

Suggested Book

Tutorial

Try these problems first before watching the video or reading the hints:

(Send it to support@cheenta.com. Our priority response is for internal students, however we occasionally try to respond to external students as well). 1. How do you infer that a parallel line needs to be drawn through the center (to the given line AB (L)?  2. Can you find any isosceles triangle in the picture (once one of the little circles is drawn)? 3. How is the second small circle drawn?

Watch the video

Start with hints

Do you really need a hint? Try it first!

Consider an inversion with respect to a circle with centre P. Call this map f. Note that, given any point X, f(X) is constructible using ruler and compass. Construct the circle f(\Gamma).

Suppose \Gamma' is one of our solutions. Then f(\Gamma') is a line perpendicular to l=f(l) and tangent to f(\Gamma)

There can be no more than two lines perpendicular to l and tangent to f(\Gamma). Thus these two lines are the images of our solution circles.

Invert the lines back to get the solution circles.

Your content goes here. Edit or remove this text inline or in the module Content settings. You can also style every aspect of this content in the module Design settings and even apply custom CSS to this text in the module Advanced settings.

Connected Program at Cheenta

Math Olympiad Program

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.

Similar Problems

Functional Equation Problem from SMO, 2018 – Question 35

Try this problem from Singapore Mathematics Olympiad, SMO, 2018 based on Functional Equation. You may use sequential hints if required.

Sequence and greatest integer | AIME I, 2000 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 2000 based on Sequence and the greatest integer.

Arithmetic sequence | AMC 10A, 2015 | Problem 7

Try this beautiful problem from Algebra: Arithmetic sequence from AMC 10A, 2015, Problem. You may use sequential hints to solve the problem.

Series and sum | AIME I, 1999 | Question 11

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1999 based on Series and sum.

Inscribed circle and perimeter | AIME I, 1999 | Question 12

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2011 based on Rectangles and sides.

Problem based on Cylinder | AMC 10A, 2015 | Question 9

Try this beautiful problem from Mensuration: Problem based on Cylinder from AMC 10A, 2015. You may use sequential hints to solve the problem.

Cubic Equation | AMC-10A, 2010 | Problem 21

Try this beautiful problem from Algebra, based on the Cubic Equation problem from AMC-10A, 2010. You may use sequential hints to solve the problem.

Median of numbers | AMC-10A, 2020 | Problem 11

Try this beautiful problem from Geometry based on Median of numbers from AMC 10A, 2020. You may use sequential hints to solve the problem.

LCM and Integers | AIME I, 1998 | Question 1

Try this beautiful problem from the American Invitational Mathematics Examination, AIME, 1998, Problem 1, based on LCM and Integers.

Problem on Fraction | AMC 10A, 2015 | Question 15

Try this beautiful Problem on Fraction from Algebra from AMC 10A, 2015. You may use sequential hints to solve the problem.