Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

[et_pb_section fb_built="1" _builder_version="3.23.3" background_color="#000000"][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.25.4" header_font="||||||||" header_text_color="#ffffff"]

Dream

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built="1" _builder_version="3.25.4"][et_pb_row _builder_version="3.25.4"][et_pb_column type="4_4" _builder_version="3.25.4"][et_pb_text _builder_version="3.25.4"]1000 research tracks. 300 mathematics cafes. 5000 researchers and students. 

We dream of rejuvenating the research atmosphere in India. Cheenta Research Track specifically caters to that dream.

Do you wish to partner in this unique program? Let us know. 

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built="1" _builder_version="3.23.3" background_color="#000000"][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.23.3" header_font="||||||||" header_text_color="#ffffff"]

Research - Geometric Group Theory

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built="1" _builder_version="3.23.3"][et_pb_row column_structure="2_5,3_5" _builder_version="3.25"][et_pb_column type="2_5" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_blurb title="Research Track leader" image="https://www.staging18.cheenta.com/wp-content/uploads/2016/11/Ashani-310x311.jpg" _builder_version="3.25.4"]Ashani Dasgupta

Pursuing Ph.D. at University of Wisconsin Milwaukee on Geometric Group Theory[/et_pb_blurb][/et_pb_column][et_pb_column type="3_5" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.25.4" text_font="||||||||" header_font="||||||||"]

Understand the problem

Suppose a relatively finitely presented group G is acting stably and minimally on a real tree T. Create a graph of groups decomposition of G using this group action.

Rips theory is used to analyze the action of finitely presented groups on real trees. We propose to extend the theory to relatively finitely presented case.

[/et_pb_text][et_pb_post_slider include_categories="773" _builder_version="3.25.4"][/et_pb_post_slider][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built="1" _builder_version="3.23.3" background_color="#000000"][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.25.4" header_font="||||||||" header_text_color="#ffffff"]

Useful information

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built="1" _builder_version="3.25.4"][et_pb_row column_structure="2_5,3_5" _builder_version="3.25"][et_pb_column type="2_5" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.25.4" text_font="||||||||" header_font="||||||||"]

How it works

  • Training bursts (3 to 4 weekly training sessions once every two months)
  • Weekly presentation/problem solving (moderated)
  • Bi-weekly advisor meeting
  • Students are required to present at least once per month
  • Students are required to submit an expository article once every 6 months

[/et_pb_text][/et_pb_column][et_pb_column type="3_5" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.25.4"]

Presentations

Aniruddha Sharma - Abelian Groups

Akash Subramanian - Group Actions

Barath Ramakrishna - Fundamental group torus

Raman Rishi - Heisenberg_Group

Keshav Sharma - Baumslag Soliter Group

Venkat - Dihedral groups 

 

 [/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row column_structure="2_5,3_5" _builder_version="3.25"][et_pb_column type="2_5" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.25.4" text_font="||||||||" header_font="||||||||"]

Papers

Henry Wilton - Rips Machine

Topological Methods in Group Theory by Scott and Wall[/et_pb_text][/et_pb_column][et_pb_column type="3_5" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.23.3"]

Books

  • Contemporary Abstract Algebra (Gallian)
  • Bridson Haeflager
  • Scott and Wall
  • Hatcher

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com