INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

April 15, 2020

Remainder Problem | ISI-B.Stat Entrance | TOMATO 90

Try this beautiful problem from Integer based on Remainder useful for ISI B.Stat Entrance.

Remainder Problem | ISI B.Stat Entrance | Problem-90


The remainder when \( 3^{12} +5^{12}\) is divided by 13 is......

  • 2
  • 1
  • 4
  • 3

Key Concepts


Division algorithm

Divisor

Number theory

Check the Answer


Answer: 2

TOMATO, Problem 90

Challenges and Thrills in Pre College Mathematics

Try with Hints


The given number is \( 3^{12} +5^{12}\)

we have to check if it is divided by 13 what will be the remainder? if we express the number in division algorithm form then we have........\( 3^{12} +5^{12}=((3)^3)^4+((5)^2)^6)=(27)^4 +(25)^6\)=\(((13 \times 2+1)^4+(13 \times 2-1)^6)\)

Can you now finish the problem ..........

Remainder :

Clearly if we divide \(((13 \times 2+1)^4+(13 \times 2-1)^6)\) by 13 then from \((13 \times 2+1)^4\) , the remainder be 1 and from \((13 \times 2-1)^6)\), the remainder is 1

can you finish the problem........

Therefore the total remainder is \(1+1=2\)

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com
enter