Cheenta is joining hands with Aditya Birla Education Academy for AMC Training.

Learn MoreContents

[hide]

Try this beautiful problem from Geometry based on Rectangle Pattern from AMC 10A, 2016, Problem 10.

A rug is made with three different colors as shown. The areas of the three differently colored regions form an arithmetic progression. The inner rectangle is one foot wide, and each of the two shaded regions is $1$ foot wide on all four sides. What is the length in feet of the inner rectangle?

- \(1\)
- \(2\)
- \(4\)
- \(6\)
- \(8\)

Geometry

Rectangle

square

But try the problem first...

Answer: \(2\)

Source

Suggested Reading

AMC-10A (2016) Problem 10

Pre College Mathematics

First hint

Given that length of the inner rectangle be $x$. Therefore the area of that rectangle is $x \cdot 1=x$

The second largest rectangle has dimensions of $x+2$ and 3 , Therefore area $3 x+6$. Now area of the second shaded rectangle= $3 x+6-x=2 x+6$

can you finish the problem........

Second Hint

Now the dimension of the largest rectangle is $x+4$ and 5 , and the area= $5 x+20$. The area of the largest shaded region is the largest rectangle- the second largest rectangle, which is $(5 x+20)-(3 x+6)=2 x+14$

can you finish the problem........

Final Step

Now The problem states that $x, 2 x+6,2 x+14$ is an arithmetic progression,i.e the common difference will be same . So we can say $(2 x+6)-(x)=(2 x+14)-(2 x+6) \Longrightarrow x+6=8 \Longrightarrow x=2$

Therefore the side length =\(2\)

- https://www.cheenta.com/pentagon-square-pattern-amc-10a-2001-problem-18/
- https://www.youtube.com/watch?v=U_LztQXd12A&t=5s

Cheenta is a knowledge partner of Aditya Birla Education Academy

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.

JOIN TRIAL
Google