Cheenta is joining hands with Aditya Birla Education Academy for AMC Training.
Learn More

May 20, 2020

Ratio of the areas | PRMO-2019 | Problem 19

Try this beautiful problem from PRMO, 2019 based on Ratio of the areas.

Ratio of the areas | PRMO | Problem-19

Let $\mathrm{AB}$ be a diameter of a circle and let $\mathrm{C}$ be a point on the segment $\mathrm{AB}$ such that $\mathrm{AC}: \mathrm{CB}=6: 7 .$ Let $\mathrm{D}$ be a point on the circle such that $\mathrm{DC}$ is perpendicular to $\mathrm{AB}$. Let DE be the diameter through $\mathrm{D}$. If $[\mathrm{XYZ}]$ denotes the area of the triangle XYZ. Find [ABD] / $[\mathrm{CDE}]$ to the nearest integer.

  • $20$
  • $91$
  • $13$
  • \(23\)

Key Concepts




Check the Answer


PRMO-2019, Problem 19

Pre College Mathematics

Try with Hints

ratio of the areas problem figure

\(\angle \mathrm{AOC} \quad=\frac{6 \pi}{13}, \angle \mathrm{BOC}=\frac{7 \pi}{13}\)

$\mathrm{Ar} \Delta \mathrm{ABD}=\mathrm{Ar} \Delta \mathrm{ABC}=\frac{1}{2} \mathrm{AB} \times \mathrm{OC} \sin \frac{6 \pi}{13}$

$\mathrm{Ar} \Delta \mathrm{CDE}=\frac{1}{2} \mathrm{DE} \times \mathrm{OC} \sin \left(\frac{7 \pi}{13}-\frac{6 \pi}{13}\right)$


$\frac{[\mathrm{ABD}]}{[\mathrm{CDE}]}=\frac{\sin \frac{6 \pi}{13}}{\sin \frac{\pi}{13}}=\frac{1}{2 \sin \frac{\pi}{26}}=\mathrm{p}$

because $\sin \theta \cong \theta$ if $\theta$ is small
$\Rightarrow \sin \frac{\pi}{26} \cong \frac{\pi}{26}$

$\mathrm{p}=\frac{13}{\pi} \Rightarrow$ Nearest integer to $\mathrm{p}$ is 4

Subscribe to Cheenta at Youtube

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.