Try this beautiful problem from PRMO, 2019 based on Ratio of the areas.

Ratio of the areas | PRMO | Problem-19


Let $\mathrm{AB}$ be a diameter of a circle and let $\mathrm{C}$ be a point on the segment $\mathrm{AB}$ such that $\mathrm{AC}: \mathrm{CB}=6: 7 .$ Let $\mathrm{D}$ be a point on the circle such that $\mathrm{DC}$ is perpendicular to $\mathrm{AB}$. Let DE be the diameter through $\mathrm{D}$. If $[\mathrm{XYZ}]$ denotes the area of the triangle XYZ. Find [ABD] / $[\mathrm{CDE}]$ to the nearest integer.

  • $20$
  • $91$
  • $13$
  • \(23\)

Key Concepts


Geometry

Triangle

Area

Check the Answer


But try the problem first…

Answer:\(13\)

Source
Suggested Reading

PRMO-2019, Problem 19

Pre College Mathematics

Try with Hints


First hint

ratio of the areas problem figure

\(\angle \mathrm{AOC} \quad=\frac{6 \pi}{13}, \angle \mathrm{BOC}=\frac{7 \pi}{13}\)

$\mathrm{Ar} \Delta \mathrm{ABD}=\mathrm{Ar} \Delta \mathrm{ABC}=\frac{1}{2} \mathrm{AB} \times \mathrm{OC} \sin \frac{6 \pi}{13}$

$\mathrm{Ar} \Delta \mathrm{CDE}=\frac{1}{2} \mathrm{DE} \times \mathrm{OC} \sin \left(\frac{7 \pi}{13}-\frac{6 \pi}{13}\right)$

Second Hint

figure

$\frac{[\mathrm{ABD}]}{[\mathrm{CDE}]}=\frac{\sin \frac{6 \pi}{13}}{\sin \frac{\pi}{13}}=\frac{1}{2 \sin \frac{\pi}{26}}=\mathrm{p}$

because $\sin \theta \cong \theta$ if $\theta$ is small
$\Rightarrow \sin \frac{\pi}{26} \cong \frac{\pi}{26}$

Final Step

$\mathrm{p}=\frac{13}{\pi} \Rightarrow$ Nearest integer to $\mathrm{p}$ is 4

Subscribe to Cheenta at Youtube