Cheenta
How Cheenta works to ensure student success?
Explore the Back-Story

[/et_pb_text][et_pb_text _builder_version="4.1" text_font="Raleway||||||||" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]Consider the vector space V over $latex \mathbb{R}$ of the polynomial functions of degree less than or equal to 3 defined on $latex \mathbb{R}$. Let $latex T : V \longrightarrow V$ defined by $latex (Tf)(x) = f(x)-xf'(x). Then the rank of T is (a) 1 (b) 2 (c) 3 (d) 4 [/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="4.1"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="4.1" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="4.1"]IIT JAM 2018 Problem 9[/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="4.1" open="off"]Vector Space [/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="4.1" open="off"]Easy[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="4.1" open="off"]Abstract Algebra By S.K Mapa[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"] Start with hints [/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="4.1" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff" hover_enabled="0"][et_pb_tab title="Hint 0" _builder_version="4.1" hover_enabled="0"]Do you really need a hint? Try it first! [/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="4.1" hover_enabled="0"]Rank(T) = dim(Range(T)) There is one easy way to calculate rank of every linear transformation. Step 1: Take by basis$latex \beta= \{e_1,....,e_n\} $of the vector space$latex V $. Step 2: Write down the matrix$latex [T]_{\beta}^{\beta} $Step 3: Calculate the rank of the matrix$latex [T]_{\beta}^{\beta} $Now can you follow these steps to get the answer? [/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="4.1" hover_enabled="0"]Standard Basis of$latex V $is$latex \{1,x,x^{2},x^{3}\} = \betalatex (Tf) (x) =f(x) - xf^{'}(x)latex (T1) (x) = 1 - 0 = 1$;$latex (Tx) (x) = x - x = 0$;$latex (T x^{2}) (x)= x^{2} - 2x^{2} = -x^{2}$;$latex (T x^{3}) (x) = -2x^{3} $So,$latex [T]_{\beta}^{\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & -2 \\ \end{pmatrix} $Hence the rank is$latex 3 [/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"] Watch the video [/et_pb_text][et_pb_code _builder_version="3.26.4"] [/et_pb_code][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"] Connected Program at Cheenta [/et_pb_text][et_pb_blurb title="College Mathematics Program" url="https://www.cheenta.com/collegeprogram/" image="https://www.cheenta.com/wp-content/uploads/2018/03/College-1.png" _builder_version="3.23.3" header_font="||||||||" header_text_color="#e02b20" header_font_size="48px" link_option_url="https://www.cheenta.com/collegeprogram/" border_color_all="#e02b20"] The higher mathematics program caters to advanced college and university students. It is useful for I.S.I. M.Math Entrance, GRE Math Subject Test, TIFR Ph.D. Entrance, I.I.T. JAM. The program is problem driven. We work with candidates who have a deep love for mathematics. This program is also useful for adults continuing who wish to rediscover the world of mathematics.[/et_pb_blurb][et_pb_button button_url="https://www.cheenta.com/collegeprogram/" button_text="Learn More" button_alignment="center" _builder_version="3.23.3" custom_button="on" button_bg_color="#0c71c3" button_border_color="#0c71c3" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" background_layout="dark" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3"][/et_pb_button][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"] Similar Problems [/et_pb_text][et_pb_post_slider include_categories="12" image_placement="right" _builder_version="4.1" background_color="rgba(155,207,242,0.54)" button_alignment="center" text_shadow_style="preset1"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section] [et_pb_section fb_built="1" _builder_version="4.1"][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"] Let's Try A Warm Up MCQ [/et_pb_text][et_pb_code _builder_version="4.1"][h5p id="15"][/et_pb_code][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"] Understand the problem [/et_pb_text][et_pb_text _builder_version="4.1" text_font="Raleway||||||||" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]Consider the vector space V overlatex \mathbb{R} $of the polynomial functions of degree less than or equal to 3 defined on$latex \mathbb{R} $. Let$latex T : V \longrightarrow V $defined by$latex (Tf)(x) = f(x)-xf'(x). Then the rank of T is  (a) 1  (b) 2 (c) 3 (d) 4 [/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="4.1"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="4.1" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px"][et_pb_accordion_item title="Source of the problem" open="on" _builder_version="4.1"]IIT JAM 2018 Problem 9[/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="4.1" open="off"]Vector Space [/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="4.1" open="off"]Easy[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="4.1" open="off"]Abstract Algebra By S.K Mapa[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="4.1" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff" hover_enabled="0"][et_pb_tab title="Hint 0" _builder_version="4.1" hover_enabled="0"]Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="4.1" hover_enabled="0"]Rank(T) = dim(Range(T)) There is one easy way to calculate rank of every linear transformation. Step 1:  Take by basis  $latex \beta= \{e_1,....,e_n\}$ of the vector space $latex V$. Step 2: Write down the matrix $latex [T]_{\beta}^{\beta}$ Step 3: Calculate the rank of the matrix  $latex [T]_{\beta}^{\beta}$ Now can you follow these steps to get the answer?  [/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="4.1" hover_enabled="0"]Standard Basis of $latex V$ is $latex \{1,x,x^{2},x^{3}\} = \beta$ $latex (Tf) (x) =f(x) - xf^{'}(x)$ $latex (T1) (x) = 1 - 0 = 1$; $latex (Tx) (x) = x - x = 0$; $latex (T x^{2}) (x)= x^{2} - 2x^{2} = -x^{2}$ ; $latex (T x^{3}) (x) = -2x^{3}$ So, $latex [T]_{\beta}^{\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & -2 \\ \end{pmatrix}$ Hence the rank is $latex 3$[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3"]

Watch the video

[/et_pb_text][et_pb_code _builder_version="3.26.4"]

Similar Problems

[/et_pb_text][et_pb_post_slider include_categories="12" image_placement="right" _builder_version="4.1" background_color="rgba(155,207,242,0.54)" button_alignment="center" text_shadow_style="preset1"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]

This site uses Akismet to reduce spam. Learn how your comment data is processed.