INTRODUCING 5 - days-a-week problem solving session for Math Olympiad and ISI Entrance. Learn More 

March 29, 2020

Radius of Convergence of a Power series | IIT JAM 2016

Try this problem from IIT JAM 2017 exam (Problem 48) and know how to determine radius of convergence of a power series.

Radius of Convergence of a Power Series | IIT JAM 2016 | Problem 48


Find the radius of convergence of the power series
$$
\sum_{n=1}^{\infty} \frac{(-4)^{n}}{n(n+1)}(x+2)^{2 n}
$$

Key Concepts


Real Analysis

Series of Functions

Power Series

Check the Answer


Answer: $\frac12$

IIT JAM 2016 , Problem 48

Real Analysis : Robert G. Bartle

Try with Hints


Given, the power series is $\sum_{n=1}^{\infty} \frac{(-4)^{n}}{n(n+1)}(x+2)^{2 n}$.

Let us put $2n=m$ to get the standard form of a power series.

We get,

$\sum_{m=2}^{\infty} \frac{(-4)^{\frac m2}}{\frac m2(\frac m2+1)}(x+2)^{ m}$.

Now let us make the transformation $z=x+2$ to get a power series about 0 :

We have,

$\sum_{m=2}^{\infty} \frac{(-4)^{\frac m2}}{\frac m2(\frac m2+1)}(z)^{ m}$

Compairing with $ \sum_{m=2}^{\infty} a_m (z)^m$

we get,

$a_m= \frac{(-4)^{\frac m2}}{\frac m2(\frac m2+1)} $

Now we have to test the convergence of the series.

Can you apply Ratio Test to check the convergence of the series.

Ratio Test : Let $\sum_{n=0}^{\infty} a_{n} x^{n}$ be a power series and let $\lim \left|\frac{a_{n+1}}{a_{n}}\right|=\mu .$ Then

  1. if $\mu=0$ the series is everywhere convergent;
  2. if $0<\mu<\infty$ the series is absolutely convergent for all $x$ satisfyir $|x|<\frac{1}{\mu}$ and the series is divergent for all $x$ satisfying $|x|>\frac{1}{\mu}$
  3. if $\mu=\infty,$ the series is nowhere converegnt.

$\begin{aligned}\left|\frac{a_{m+1}}{a_m}\right| &=\left| \frac{4^{\frac m2}\cdot 2\cdot4}{(m+1)(m+3)} \times \frac{m(m+2)}{4^{\frac m2} \cdot 4}\right| \\&=\left| \quad \frac{2\left(1+\frac{2}{m}\right)}{\left(1+\frac{1}{m}\right)(1+\frac 3m)}\right|\end{aligned}$

Now

$\lim \left|\frac{a_{m+1}}{a_{m}}\right|=2 \in (0,\infty)$

Then, The given power series is absolutely convergent i.e., convergent $\forall x$ such that $|x+2|<\frac 12$

Then the answer is $\frac 12$

Subscribe to Cheenta at Youtube


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com