How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?

# Radius of a Circle - SMO 2013 - Problem 25

Try this beautiful problem from Geometry based on the radius and tangent of a circle.

## SMO 2013 - Geometry (Problem 25)

As shown in the figure below ,circles $C_1$and$C_2$ of radius 360 are tangent to each other , and both tangent to the straight line l.if the circle$C_3$ is tangent to $C_1$ ,$C_2$ and l ,and circle$C_4$is tangent to$C_1$,$C_3$ and l ,find the radius of$C_4$

• 30
• 35
• 40

### Key Concepts

Geometry

Pythagoras theorm

Distance Formula

Pre College Mathematics

## Try with Hints

Let R be the radius of $C_3$

$C_2E$ =360-R

$C_3E=360$

$C_2C_3$=360+R

Using pythagoras theorm ....

$(360-R)^2+360^2=(360+R)^2$

i.e R=90

Can you now finish the problem ..........

Let the radius of$C_4$ be r

then use the distacce formula and tangent property........

can you finish the problem........

Let r be the radius of $C_4$ (small triangle).

LO+OC=360

$\sqrt{(360+p)^2-(360-p)^2}+\sqrt{(90+r)^2-(90-r)^2}=360$

i.e r=40.