Cheenta
How 9 Cheenta students ranked in top 100 in ISI and CMI Entrances?
Learn More

Radius of a Circle - SMO 2013 - Problem 25

Try this beautiful problem from Geometry based on the radius and tangent of a circle.

SMO 2013 - Geometry (Problem 25)


As shown in the figure below ,circles $C_1 $and$ C_2$ of radius 360 are tangent to each other , and both tangent to the straight line l.if the circle$ C_3$ is tangent to $C_1$ ,$C_2$ and l ,and circle$ C_4 $is tangent to$ C_1$,$C_3$ and l ,find the radius of$ C_4$

radius of a circle

  • 30
  • 35
  • 40

Key Concepts


Geometry

Pythagoras theorm

Distance Formula

Check the Answer


Answer:40

SMO -Math Olympiad-2013

Pre College Mathematics

Try with Hints


Let R be the radius of $C_3$

$C_2E$ =360-R

$C_3E=360$

$C_2C_3$=360+R

Using pythagoras theorm ....

$ (360-R)^2+360^2=(360+R)^2$

i.e R=90

Can you now finish the problem ..........

Let the radius of$ C_4$ be r

then use the distacce formula and tangent property........

can you finish the problem........

Let r be the radius of $C_4$ (small triangle).

LO+OC=360

$\sqrt{(360+p)^2-(360-p)^2}+\sqrt{(90+r)^2-(90-r)^2}=360$

i.e r=40.

Subscribe to Cheenta at Youtube


Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy
Cheenta

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.
JOIN TRIAL
support@cheenta.com