What is the NO-SHORTCUT approach for learning great Mathematics?
Learn More

May 31, 2020

Problem on Fibonacci sequence | AIME I, 1988 | Question 13

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1988 based on Fibonacci sequence.

Fibonacci sequence Problem - AIME I, 1988

Find a if a and b are integers such that \(x^{2}-x-1\) is a factor of \(ax^{17}+bx^{16}+1\).

  • is 107
  • is 987
  • is 840
  • cannot be determined from the given information

Key Concepts




Check the Answer

Answer: is 987.

AIME I, 1988, Question 13

Elementary Number Theory by David Burton

Try with Hints

First hint

Let F(x)=\(ax^{17}+bx^{16}+1\)

Let P(x) be polynomial such that


constant term of P(x) =(-1)

now \((x^{2}-x-1)(c_1x^{15}+c_2x^{14}+....+c_{15}x-1)\) where \(c_{i}\)=coefficient

Second Hint

comparing the coefficients of x we get the terms

since F(x) has no x term, then \(c_{15}\)=1

getting \(c_{14}\)


=terms +\(0x^{2}\) +terms

or, \(c_{14}=-2\)

proceeding in the same way \(c_{13}=3\), \(c_{12}=-5\), \(c_{11}=8\) gives a pattern of Fibonacci sequence

Final Step

or, coefficients of P(x) are Fibonacci sequence with alternating signs

or, a=\(c_1=F_{16}\) where \(F_{16}\) is 16th Fibonacci number

or, a=987.

Subscribe to Cheenta at Youtube

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Knowledge Partner

Cheenta is a knowledge partner of Aditya Birla Education Academy

Cheenta Academy

Aditya Birla Education Academy

Aditya Birla Education Academy

Cheenta. Passion for Mathematics

Advanced Mathematical Science. Taught by olympians, researchers and true masters of the subject.